Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To fill in the table with the appropriate average velocities and then make a conjecture about the value of the instantaneous velocity at [tex]\( t=0 \)[/tex], we need to follow these steps:
1. Determine the position function: The position function given is [tex]\( s(t) = \frac{17}{t+1} \)[/tex].
2. Calculate the average velocity: The average velocity over a time interval [tex]\([t_1, t_2]\)[/tex] is given by the formula:
[tex]\[ v_{avg} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Here, since we are always starting from [tex]\( t_1 = 0 \)[/tex], the formula simplifies to:
[tex]\[ v_{avg} = \frac{s(t) - s(0)}{t - 0} = \frac{s(t) - s(0)}{t} \][/tex]
3. Evaluate [tex]\( s(0) \)[/tex]:
[tex]\[ s(0) = \frac{17}{0+1} = 17 \][/tex]
4. Compute [tex]\( v_{avg} \)[/tex] for different [tex]\( t \)[/tex] values:
- For [tex]\( [0, 1] \)[/tex]:
[tex]\[ s(1) = \frac{17}{1+1} = \frac{17}{2} = 8.5 \][/tex]
[tex]\[ v_{avg} = \frac{s(1) - s(0)}{1 - 0} = \frac{8.5 - 17}{1} = -8.5 \][/tex]
- For [tex]\( [0, 0.5] \)[/tex]:
[tex]\[ s(0.5) = \frac{17}{0.5+1} = \frac{17}{1.5} \approx 11.333 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.5) - s(0)}{0.5 - 0} = \frac{11.333 - 17}{0.5} \approx -11.333 \][/tex]
- For [tex]\( [0, 0.1] \)[/tex]:
[tex]\[ s(0.1) = \frac{17}{0.1+1} \approx 15.4545 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.1) - s(0)}{0.1 - 0} = \frac{15.4545 - 17}{0.1} \approx -15.455 \][/tex]
- For [tex]\( [0, 0.01] \)[/tex]:
[tex]\[ s(0.01) = \frac{17}{0.01+1} \approx 16.8317 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.01) - s(0)}{0.01 - 0} = \frac{16.8317 - 17}{0.01} \approx -16.832 \][/tex]
- For [tex]\( [0, 0.001] \)[/tex]:
[tex]\[ s(0.001) = \frac{17}{0.001+1} \approx 16.983 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.001) - s(0)}{0.001 - 0} = \frac{16.983 - 17}{0.001} \approx -16.983 \][/tex]
5. Fill in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Time Interval} & [0,1] & [0,0.5] & [0,0.1] & [0,0.01] & [0,0.001] \\ \hline \text{Average Velocity} & -8.5 & -11.333 & -15.455 & -16.832 & -16.983 \\ \hline \end{array} \][/tex]
6. Conjecture about instantaneous velocity at [tex]\( t=0 \)[/tex]:
- As the time interval [tex]\([0, t]\)[/tex] gets smaller, the average velocity values get closer to approximately [tex]\(-17\)[/tex].
- Therefore, we can conjecture that the instantaneous velocity at [tex]\( t=0 \)[/tex] is:
[tex]\[ \lim_{t \to 0} \frac{17/(t+1) - 17}{t} \approx -17 \][/tex]
1. Determine the position function: The position function given is [tex]\( s(t) = \frac{17}{t+1} \)[/tex].
2. Calculate the average velocity: The average velocity over a time interval [tex]\([t_1, t_2]\)[/tex] is given by the formula:
[tex]\[ v_{avg} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Here, since we are always starting from [tex]\( t_1 = 0 \)[/tex], the formula simplifies to:
[tex]\[ v_{avg} = \frac{s(t) - s(0)}{t - 0} = \frac{s(t) - s(0)}{t} \][/tex]
3. Evaluate [tex]\( s(0) \)[/tex]:
[tex]\[ s(0) = \frac{17}{0+1} = 17 \][/tex]
4. Compute [tex]\( v_{avg} \)[/tex] for different [tex]\( t \)[/tex] values:
- For [tex]\( [0, 1] \)[/tex]:
[tex]\[ s(1) = \frac{17}{1+1} = \frac{17}{2} = 8.5 \][/tex]
[tex]\[ v_{avg} = \frac{s(1) - s(0)}{1 - 0} = \frac{8.5 - 17}{1} = -8.5 \][/tex]
- For [tex]\( [0, 0.5] \)[/tex]:
[tex]\[ s(0.5) = \frac{17}{0.5+1} = \frac{17}{1.5} \approx 11.333 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.5) - s(0)}{0.5 - 0} = \frac{11.333 - 17}{0.5} \approx -11.333 \][/tex]
- For [tex]\( [0, 0.1] \)[/tex]:
[tex]\[ s(0.1) = \frac{17}{0.1+1} \approx 15.4545 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.1) - s(0)}{0.1 - 0} = \frac{15.4545 - 17}{0.1} \approx -15.455 \][/tex]
- For [tex]\( [0, 0.01] \)[/tex]:
[tex]\[ s(0.01) = \frac{17}{0.01+1} \approx 16.8317 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.01) - s(0)}{0.01 - 0} = \frac{16.8317 - 17}{0.01} \approx -16.832 \][/tex]
- For [tex]\( [0, 0.001] \)[/tex]:
[tex]\[ s(0.001) = \frac{17}{0.001+1} \approx 16.983 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.001) - s(0)}{0.001 - 0} = \frac{16.983 - 17}{0.001} \approx -16.983 \][/tex]
5. Fill in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Time Interval} & [0,1] & [0,0.5] & [0,0.1] & [0,0.01] & [0,0.001] \\ \hline \text{Average Velocity} & -8.5 & -11.333 & -15.455 & -16.832 & -16.983 \\ \hline \end{array} \][/tex]
6. Conjecture about instantaneous velocity at [tex]\( t=0 \)[/tex]:
- As the time interval [tex]\([0, t]\)[/tex] gets smaller, the average velocity values get closer to approximately [tex]\(-17\)[/tex].
- Therefore, we can conjecture that the instantaneous velocity at [tex]\( t=0 \)[/tex] is:
[tex]\[ \lim_{t \to 0} \frac{17/(t+1) - 17}{t} \approx -17 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.