Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To fill in the table with the appropriate average velocities and then make a conjecture about the value of the instantaneous velocity at [tex]\( t=0 \)[/tex], we need to follow these steps:
1. Determine the position function: The position function given is [tex]\( s(t) = \frac{17}{t+1} \)[/tex].
2. Calculate the average velocity: The average velocity over a time interval [tex]\([t_1, t_2]\)[/tex] is given by the formula:
[tex]\[ v_{avg} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Here, since we are always starting from [tex]\( t_1 = 0 \)[/tex], the formula simplifies to:
[tex]\[ v_{avg} = \frac{s(t) - s(0)}{t - 0} = \frac{s(t) - s(0)}{t} \][/tex]
3. Evaluate [tex]\( s(0) \)[/tex]:
[tex]\[ s(0) = \frac{17}{0+1} = 17 \][/tex]
4. Compute [tex]\( v_{avg} \)[/tex] for different [tex]\( t \)[/tex] values:
- For [tex]\( [0, 1] \)[/tex]:
[tex]\[ s(1) = \frac{17}{1+1} = \frac{17}{2} = 8.5 \][/tex]
[tex]\[ v_{avg} = \frac{s(1) - s(0)}{1 - 0} = \frac{8.5 - 17}{1} = -8.5 \][/tex]
- For [tex]\( [0, 0.5] \)[/tex]:
[tex]\[ s(0.5) = \frac{17}{0.5+1} = \frac{17}{1.5} \approx 11.333 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.5) - s(0)}{0.5 - 0} = \frac{11.333 - 17}{0.5} \approx -11.333 \][/tex]
- For [tex]\( [0, 0.1] \)[/tex]:
[tex]\[ s(0.1) = \frac{17}{0.1+1} \approx 15.4545 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.1) - s(0)}{0.1 - 0} = \frac{15.4545 - 17}{0.1} \approx -15.455 \][/tex]
- For [tex]\( [0, 0.01] \)[/tex]:
[tex]\[ s(0.01) = \frac{17}{0.01+1} \approx 16.8317 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.01) - s(0)}{0.01 - 0} = \frac{16.8317 - 17}{0.01} \approx -16.832 \][/tex]
- For [tex]\( [0, 0.001] \)[/tex]:
[tex]\[ s(0.001) = \frac{17}{0.001+1} \approx 16.983 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.001) - s(0)}{0.001 - 0} = \frac{16.983 - 17}{0.001} \approx -16.983 \][/tex]
5. Fill in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Time Interval} & [0,1] & [0,0.5] & [0,0.1] & [0,0.01] & [0,0.001] \\ \hline \text{Average Velocity} & -8.5 & -11.333 & -15.455 & -16.832 & -16.983 \\ \hline \end{array} \][/tex]
6. Conjecture about instantaneous velocity at [tex]\( t=0 \)[/tex]:
- As the time interval [tex]\([0, t]\)[/tex] gets smaller, the average velocity values get closer to approximately [tex]\(-17\)[/tex].
- Therefore, we can conjecture that the instantaneous velocity at [tex]\( t=0 \)[/tex] is:
[tex]\[ \lim_{t \to 0} \frac{17/(t+1) - 17}{t} \approx -17 \][/tex]
1. Determine the position function: The position function given is [tex]\( s(t) = \frac{17}{t+1} \)[/tex].
2. Calculate the average velocity: The average velocity over a time interval [tex]\([t_1, t_2]\)[/tex] is given by the formula:
[tex]\[ v_{avg} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Here, since we are always starting from [tex]\( t_1 = 0 \)[/tex], the formula simplifies to:
[tex]\[ v_{avg} = \frac{s(t) - s(0)}{t - 0} = \frac{s(t) - s(0)}{t} \][/tex]
3. Evaluate [tex]\( s(0) \)[/tex]:
[tex]\[ s(0) = \frac{17}{0+1} = 17 \][/tex]
4. Compute [tex]\( v_{avg} \)[/tex] for different [tex]\( t \)[/tex] values:
- For [tex]\( [0, 1] \)[/tex]:
[tex]\[ s(1) = \frac{17}{1+1} = \frac{17}{2} = 8.5 \][/tex]
[tex]\[ v_{avg} = \frac{s(1) - s(0)}{1 - 0} = \frac{8.5 - 17}{1} = -8.5 \][/tex]
- For [tex]\( [0, 0.5] \)[/tex]:
[tex]\[ s(0.5) = \frac{17}{0.5+1} = \frac{17}{1.5} \approx 11.333 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.5) - s(0)}{0.5 - 0} = \frac{11.333 - 17}{0.5} \approx -11.333 \][/tex]
- For [tex]\( [0, 0.1] \)[/tex]:
[tex]\[ s(0.1) = \frac{17}{0.1+1} \approx 15.4545 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.1) - s(0)}{0.1 - 0} = \frac{15.4545 - 17}{0.1} \approx -15.455 \][/tex]
- For [tex]\( [0, 0.01] \)[/tex]:
[tex]\[ s(0.01) = \frac{17}{0.01+1} \approx 16.8317 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.01) - s(0)}{0.01 - 0} = \frac{16.8317 - 17}{0.01} \approx -16.832 \][/tex]
- For [tex]\( [0, 0.001] \)[/tex]:
[tex]\[ s(0.001) = \frac{17}{0.001+1} \approx 16.983 \][/tex]
[tex]\[ v_{avg} = \frac{s(0.001) - s(0)}{0.001 - 0} = \frac{16.983 - 17}{0.001} \approx -16.983 \][/tex]
5. Fill in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Time Interval} & [0,1] & [0,0.5] & [0,0.1] & [0,0.01] & [0,0.001] \\ \hline \text{Average Velocity} & -8.5 & -11.333 & -15.455 & -16.832 & -16.983 \\ \hline \end{array} \][/tex]
6. Conjecture about instantaneous velocity at [tex]\( t=0 \)[/tex]:
- As the time interval [tex]\([0, t]\)[/tex] gets smaller, the average velocity values get closer to approximately [tex]\(-17\)[/tex].
- Therefore, we can conjecture that the instantaneous velocity at [tex]\( t=0 \)[/tex] is:
[tex]\[ \lim_{t \to 0} \frac{17/(t+1) - 17}{t} \approx -17 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.