Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break down the problem and find the required values step-by-step.
Given the position function:
[tex]\[ s(t) = 8 \sin (5t) \][/tex]
We're asked to find the average velocities over specific intervals and then make a conjecture about the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex].
1. Average Velocities
The average velocity over the interval [tex]\([t_1, t_2]\)[/tex] can be calculated using the difference quotient:
[tex]\[ v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Now, let's compute this for each given interval.
- Interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
- [tex]\( t_1 = \frac{\pi}{2} \)[/tex]
- [tex]\( t_2 = \pi \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \sin \left(5 \cdot \frac{\pi}{2}\right) = 8 \sin \left(\frac{5\pi}{2}\right) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \cdot \pi\right) = 8 \sin (5\pi) = -8 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-8 - 8}{\pi - \frac{\pi}{2}} = \frac{-16}{\frac{\pi}{2}} = \frac{-16 \cdot 2}{\pi} = -\frac{32}{\pi} \approx -10.1859 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.1 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.1\right)\right) \approx -0.792584 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.792584 - 8}{0.1} = -5.092958 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.01 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.01\right)\right) \approx -0.079933 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.079933 - 8}{0.01} = -0.999791 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.001\right)\right) \approx -0.007999986 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.007999986 - 8}{0.001} = -0.0999998 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.0001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.0001\right)\right) \approx -0.0007999998 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.0007999998 - 8}{0.0001} = -0.0099999998 \][/tex]
2. Instantaneous Velocity at [tex]\( t = \frac{\pi}{2} \)[/tex]:
The instantaneous velocity is found by taking the derivative of [tex]\(s(t)\)[/tex] and evaluating it at [tex]\( t = \frac{\pi}{2} \)[/tex].
[tex]\[ v(t) = \frac{ds}{dt} = 40 \cos (5t) \][/tex]
At [tex]\( t = \frac{\pi}{2} \)[/tex]:
[tex]\[ v\left(\frac{\pi}{2}\right) = 40 \cos \left(5 \cdot \frac{\pi}{2}\right) = 40 \cos \left(\frac{5\pi}{2}\right) = 40 \cdot 0 = 0 \][/tex]
However, we note that [tex]\(40 \cos \left(\frac{5\pi}{2}\right) \approx 1.2246467991473532 \times 10^{-14}\)[/tex], which is very close to zero (practically zero).
Summary:
Here's the completed table with the average velocities and conjecture on instantaneous velocity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Time \ Interval & \left[\frac{\pi}{2}, \pi\right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001 \right] \\ \hline Average \ Velocity & -10.1859 & -5.092958 & -0.999791 & -0.0999998 & -0.0099999998 \\ \hline \end{array} \][/tex]
Conjecture about the instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex]:
The instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex] is approximately [tex]\( 1.2246467991473532 \times 10^{-14} \text{ or practically } 0 \)[/tex].
Given the position function:
[tex]\[ s(t) = 8 \sin (5t) \][/tex]
We're asked to find the average velocities over specific intervals and then make a conjecture about the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex].
1. Average Velocities
The average velocity over the interval [tex]\([t_1, t_2]\)[/tex] can be calculated using the difference quotient:
[tex]\[ v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Now, let's compute this for each given interval.
- Interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
- [tex]\( t_1 = \frac{\pi}{2} \)[/tex]
- [tex]\( t_2 = \pi \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \sin \left(5 \cdot \frac{\pi}{2}\right) = 8 \sin \left(\frac{5\pi}{2}\right) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \cdot \pi\right) = 8 \sin (5\pi) = -8 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-8 - 8}{\pi - \frac{\pi}{2}} = \frac{-16}{\frac{\pi}{2}} = \frac{-16 \cdot 2}{\pi} = -\frac{32}{\pi} \approx -10.1859 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.1 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.1\right)\right) \approx -0.792584 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.792584 - 8}{0.1} = -5.092958 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.01 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.01\right)\right) \approx -0.079933 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.079933 - 8}{0.01} = -0.999791 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.001\right)\right) \approx -0.007999986 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.007999986 - 8}{0.001} = -0.0999998 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.0001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.0001\right)\right) \approx -0.0007999998 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.0007999998 - 8}{0.0001} = -0.0099999998 \][/tex]
2. Instantaneous Velocity at [tex]\( t = \frac{\pi}{2} \)[/tex]:
The instantaneous velocity is found by taking the derivative of [tex]\(s(t)\)[/tex] and evaluating it at [tex]\( t = \frac{\pi}{2} \)[/tex].
[tex]\[ v(t) = \frac{ds}{dt} = 40 \cos (5t) \][/tex]
At [tex]\( t = \frac{\pi}{2} \)[/tex]:
[tex]\[ v\left(\frac{\pi}{2}\right) = 40 \cos \left(5 \cdot \frac{\pi}{2}\right) = 40 \cos \left(\frac{5\pi}{2}\right) = 40 \cdot 0 = 0 \][/tex]
However, we note that [tex]\(40 \cos \left(\frac{5\pi}{2}\right) \approx 1.2246467991473532 \times 10^{-14}\)[/tex], which is very close to zero (practically zero).
Summary:
Here's the completed table with the average velocities and conjecture on instantaneous velocity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Time \ Interval & \left[\frac{\pi}{2}, \pi\right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001 \right] \\ \hline Average \ Velocity & -10.1859 & -5.092958 & -0.999791 & -0.0999998 & -0.0099999998 \\ \hline \end{array} \][/tex]
Conjecture about the instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex]:
The instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex] is approximately [tex]\( 1.2246467991473532 \times 10^{-14} \text{ or practically } 0 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.