Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to determine the parent function based on the given table values, then determine the values after translating the function up by 5 units, and finally provide a point in the table for the transformed function.
1. Determining the Parent Function
The given table is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 9 & 11 & 15 & 23 & 39 \\ \hline \end{array} \][/tex]
From this table, we can observe that the values of [tex]\(f(x)\)[/tex] follow a certain pattern. Based on this pattern, the parent function can be identified as:
[tex]\[ x^2 + x + 7 \][/tex]
2. Translating the Function Up by 5 Units
When we translate the function [tex]\(f(x)\)[/tex] up by 5 units, we need to add 5 to each of the [tex]\(f(x)\)[/tex] values. Thus, we need to calculate the new values as follows:
[tex]\[ \begin{array}{ccc} x & f(x) & f(x) + 5 \\ 1 & 9 & 14 \\ 2 & 11 & 16 \\ 3 & 15 & 20 \\ 4 & 23 & 28 \\ 5 & 39 & 44 \\ \end{array} \][/tex]
The [tex]\(y\)[/tex]-values after translating up 5 units are:
[tex]\[ [14, 16, 20, 28, 44] \][/tex]
3. Providing a Point for the Transformed Function
For a specific point, consider [tex]\(x = 1\)[/tex]. The translated value for [tex]\(x = 1\)[/tex] is:
[tex]\[ f(1) + 5 = 9 + 5 = 14 \][/tex]
Therefore, the point in the table for the transformed function is:
[tex]\[ (1, 14) \][/tex]
Combining all steps, we can complete the statements as follows:
- The parent function of the function represented in the table is [tex]\( \boldsymbol{x^2 + x + 7} \)[/tex].
- If function [tex]\(f\)[/tex] was translated up 5 units, the [tex]\( \boldsymbol{y} \)[/tex]-values would be [tex]\( \boldsymbol{[14, 16, 20, 28, 44]} \)[/tex].
- A point in the table for the transformed function would be [tex]\( \boldsymbol{(1, 14)} \)[/tex].
1. Determining the Parent Function
The given table is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 9 & 11 & 15 & 23 & 39 \\ \hline \end{array} \][/tex]
From this table, we can observe that the values of [tex]\(f(x)\)[/tex] follow a certain pattern. Based on this pattern, the parent function can be identified as:
[tex]\[ x^2 + x + 7 \][/tex]
2. Translating the Function Up by 5 Units
When we translate the function [tex]\(f(x)\)[/tex] up by 5 units, we need to add 5 to each of the [tex]\(f(x)\)[/tex] values. Thus, we need to calculate the new values as follows:
[tex]\[ \begin{array}{ccc} x & f(x) & f(x) + 5 \\ 1 & 9 & 14 \\ 2 & 11 & 16 \\ 3 & 15 & 20 \\ 4 & 23 & 28 \\ 5 & 39 & 44 \\ \end{array} \][/tex]
The [tex]\(y\)[/tex]-values after translating up 5 units are:
[tex]\[ [14, 16, 20, 28, 44] \][/tex]
3. Providing a Point for the Transformed Function
For a specific point, consider [tex]\(x = 1\)[/tex]. The translated value for [tex]\(x = 1\)[/tex] is:
[tex]\[ f(1) + 5 = 9 + 5 = 14 \][/tex]
Therefore, the point in the table for the transformed function is:
[tex]\[ (1, 14) \][/tex]
Combining all steps, we can complete the statements as follows:
- The parent function of the function represented in the table is [tex]\( \boldsymbol{x^2 + x + 7} \)[/tex].
- If function [tex]\(f\)[/tex] was translated up 5 units, the [tex]\( \boldsymbol{y} \)[/tex]-values would be [tex]\( \boldsymbol{[14, 16, 20, 28, 44]} \)[/tex].
- A point in the table for the transformed function would be [tex]\( \boldsymbol{(1, 14)} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.