Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
First, let's introduce the concept of the correlation coefficient. The correlation coefficient, often denoted as [tex]\( r \)[/tex], measures the strength and direction of a linear relationship between two variables. Its value ranges from [tex]\(-1\)[/tex] to [tex]\(1\)[/tex], where:
- [tex]\(1\)[/tex] indicates a perfect positive linear relationship.
- [tex]\(-1\)[/tex] indicates a perfect negative linear relationship.
- [tex]\(0\)[/tex] indicates no linear relationship.
Given the table of data, we have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 15 \\ \hline 5 & 10 \\ \hline 10 & 5 \\ \hline 15 & 0 \\ \hline \end{array} \][/tex]
To determine the correlation coefficient [tex]\( r \)[/tex], follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- The mean of [tex]\( x \)[/tex] ([tex]\( \bar{x} \)[/tex]) = [tex]\(\frac{0 + 5 + 10 + 15}{4} = 7.5\)[/tex]
- The mean of [tex]\( y \)[/tex] ([tex]\( \bar{y} \)[/tex]) = [tex]\(\frac{15 + 10 + 5 + 0}{4} = 7.5\)[/tex]
2. Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Covariance formula: [tex]\[ \text{Cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
3. Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Standard deviation formula: [tex]\[ \sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \][/tex]
- [tex]\[ \sigma_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2} \][/tex]
4. Compute the correlation coefficient.
- Correlation coefficient formula: [tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
After performing these calculations with the given data, we find that the correlation coefficient is:
[tex]\[ r = -1.0 \][/tex]
This indicates a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Hence, the correct answer for the correlation coefficient for the data shown in the table is:
[tex]\[ -1 \][/tex]
- [tex]\(1\)[/tex] indicates a perfect positive linear relationship.
- [tex]\(-1\)[/tex] indicates a perfect negative linear relationship.
- [tex]\(0\)[/tex] indicates no linear relationship.
Given the table of data, we have:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 15 \\ \hline 5 & 10 \\ \hline 10 & 5 \\ \hline 15 & 0 \\ \hline \end{array} \][/tex]
To determine the correlation coefficient [tex]\( r \)[/tex], follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- The mean of [tex]\( x \)[/tex] ([tex]\( \bar{x} \)[/tex]) = [tex]\(\frac{0 + 5 + 10 + 15}{4} = 7.5\)[/tex]
- The mean of [tex]\( y \)[/tex] ([tex]\( \bar{y} \)[/tex]) = [tex]\(\frac{15 + 10 + 5 + 0}{4} = 7.5\)[/tex]
2. Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Covariance formula: [tex]\[ \text{Cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
3. Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
- Standard deviation formula: [tex]\[ \sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \][/tex]
- [tex]\[ \sigma_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2} \][/tex]
4. Compute the correlation coefficient.
- Correlation coefficient formula: [tex]\[ r = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
After performing these calculations with the given data, we find that the correlation coefficient is:
[tex]\[ r = -1.0 \][/tex]
This indicates a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Hence, the correct answer for the correlation coefficient for the data shown in the table is:
[tex]\[ -1 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.