Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's find the oxidation state of nitrogen in each of the following compounds step-by-step:
### (i) NO₂
1. Identify the elements and their known oxidation states:
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (NO₂):
- The compound is neutral, so the sum of oxidation states must be 0.
- Hence, [tex]\( x + 2(-2) = 0 \)[/tex].
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4. \][/tex]
Therefore, the oxidation state of nitrogen in NO₂ is +4.
### (ii) N₂O
1. Identify the elements and their known oxidation states:
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (N₂O):
- The compound is neutral, so the sum of oxidation states must be 0.
[tex]\[ 2x + (-2) = 0. \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 2 = 0 \implies 2x = 2 \implies x = 1. \][/tex]
Therefore, the oxidation state of nitrogen in N₂O is +1.
### (iii) N₂O3
1. Identify the elements and their known oxidation states:
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (N₂O3):
- The compound is neutral, so the sum of oxidation states must be 0.
[tex]\[ 2x + 3(-2) = 0. \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 6 = 0 \implies 2x = 6 \implies x = 3. \][/tex]
Therefore, the oxidation state of nitrogen in N₂O3 is +3.
### (iv) HNO3
1. Identify the elements and their known oxidation states:
- Hydrogen (H): Typically has an oxidation state of +1.
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (HNO3):
- The compound is neutral, so the sum of oxidation states must be 0.
[tex]\[ (+1) + x + 3(-2) = 0. \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 1 + x - 6 = 0 \implies x - 5 = 0 \implies x = 5. \][/tex]
Therefore, the oxidation state of nitrogen in HNO3 is +5.
### (i) NO₂
1. Identify the elements and their known oxidation states:
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (NO₂):
- The compound is neutral, so the sum of oxidation states must be 0.
- Hence, [tex]\( x + 2(-2) = 0 \)[/tex].
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4. \][/tex]
Therefore, the oxidation state of nitrogen in NO₂ is +4.
### (ii) N₂O
1. Identify the elements and their known oxidation states:
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (N₂O):
- The compound is neutral, so the sum of oxidation states must be 0.
[tex]\[ 2x + (-2) = 0. \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 2 = 0 \implies 2x = 2 \implies x = 1. \][/tex]
Therefore, the oxidation state of nitrogen in N₂O is +1.
### (iii) N₂O3
1. Identify the elements and their known oxidation states:
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (N₂O3):
- The compound is neutral, so the sum of oxidation states must be 0.
[tex]\[ 2x + 3(-2) = 0. \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 6 = 0 \implies 2x = 6 \implies x = 3. \][/tex]
Therefore, the oxidation state of nitrogen in N₂O3 is +3.
### (iv) HNO3
1. Identify the elements and their known oxidation states:
- Hydrogen (H): Typically has an oxidation state of +1.
- Oxygen (O): Typically has an oxidation state of -2.
- Nitrogen (N): Oxidation state is unknown; denote it as [tex]\( x \)[/tex].
2. Write the overall oxidation state equation for the compound (HNO3):
- The compound is neutral, so the sum of oxidation states must be 0.
[tex]\[ (+1) + x + 3(-2) = 0. \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 1 + x - 6 = 0 \implies x - 5 = 0 \implies x = 5. \][/tex]
Therefore, the oxidation state of nitrogen in HNO3 is +5.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.