Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's approach this problem methodically. Given the information:
- [tex]\( n(U) = 210 \)[/tex]
- [tex]\( n(A) = 120 \)[/tex]
- [tex]\( n(B) = 60 \)[/tex]
- [tex]\( n((A \cup B)') = 45 \)[/tex]
We need to find:
- The Venn diagram representation.
- The value of only [tex]\( A \)[/tex].
- The value of [tex]\( A \cap B \)[/tex].
### Step-by-Step Solution:
#### (a) Venn Diagram Representation
1. Universal Set [tex]\( U \)[/tex]: This describes the entire set, which contains all elements we're considering. The total number of elements in [tex]\( U \)[/tex] is 210.
2. Subset [tex]\( A \)[/tex]: A subset of [tex]\( U \)[/tex] with 120 elements ( [tex]\( n(A) = 120 \)[/tex] ).
3. Subset [tex]\( B \)[/tex]: Another subset of [tex]\( U \)[/tex] with 60 elements ( [tex]\( n(B) = 60 \)[/tex] ).
4. Complement of [tex]\( A \cup B \)[/tex]: The number of elements not in [tex]\( A \cup B \)[/tex] is 45 ( [tex]\( n((A \cup B)') = 45 \)[/tex] ).
The point is to show the relationships and overlapping sections in the Venn diagram:
- Let the part of [tex]\( A \)[/tex] that does not intersect [tex]\( B \)[/tex] be [tex]\( A_{\text{only}} \)[/tex].
- Let the part of [tex]\( B \)[/tex] that does not intersect [tex]\( A \)[/tex] be [tex]\( B_{\text{only}} \)[/tex].
- Let the overlapping part (intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex]) be represented as [tex]\( A \cap B \)[/tex].
#### (b) Finding the Value of Only [tex]\( A \)[/tex]
To find only [tex]\( A \)[/tex], we need to determine the value of [tex]\( A \)[/tex] excluding the part that intersects with [tex]\( B \)[/tex].
The values calculated:
1. Calculate [tex]\( n(A \cup B) \)[/tex]:
- Since [tex]\( n((A \cup B)') = 45 \)[/tex], the number of elements in [tex]\( A \cup B \)[/tex] can be found from:
[tex]\[ n(A \cup B) = n(U) - n((A \cup B)') \][/tex]
[tex]\[ n(A \cup B) = 210 - 45 \][/tex]
[tex]\[ n(A \cup B) = 165 \][/tex]
2. Calculate [tex]\( n(A \cap B) \)[/tex] using the principle of inclusion-exclusion:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Solving for [tex]\( n(A \cap B) \)[/tex]:
[tex]\[ 165 = 120 + 60 - n(A \cap B) \][/tex]
[tex]\[ 165 = 180 - n(A \cap B) \][/tex]
[tex]\[ n(A \cap B) = 180 - 165 \][/tex]
[tex]\[ n(A \cap B) = 15 \][/tex]
3. Calculate the Value of Only [tex]\( A \)[/tex]:
[tex]\[ \text{Only } A = n(A) - n(A \cap B) \][/tex]
[tex]\[ \text{Only } A = 120 - 15 \][/tex]
[tex]\[ \text{Only } A = 105 \][/tex]
#### (c) Finding the Value of [tex]\( A \cap B \)[/tex]
From our calculations above, we found that:
[tex]\[ n(A \cap B) = 15 \][/tex]
### Conclusion:
- (a): The Venn diagram would depict the total universal set [tex]\( U \)[/tex], with two overlapping subsets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]. [tex]\( A \cup B \)[/tex]'s complement contains 45 elements, meaning 165 elements fall within either [tex]\( A \)[/tex] or [tex]\( B \)[/tex] or their intersection.
- (b): The value of only [tex]\( A \)[/tex] is [tex]\( \boxed{105} \)[/tex].
- (c): The value of [tex]\( A \cap B \)[/tex] is [tex]\( \boxed{15} \)[/tex].
Thus, the calculations are neatly confirmed.
- [tex]\( n(U) = 210 \)[/tex]
- [tex]\( n(A) = 120 \)[/tex]
- [tex]\( n(B) = 60 \)[/tex]
- [tex]\( n((A \cup B)') = 45 \)[/tex]
We need to find:
- The Venn diagram representation.
- The value of only [tex]\( A \)[/tex].
- The value of [tex]\( A \cap B \)[/tex].
### Step-by-Step Solution:
#### (a) Venn Diagram Representation
1. Universal Set [tex]\( U \)[/tex]: This describes the entire set, which contains all elements we're considering. The total number of elements in [tex]\( U \)[/tex] is 210.
2. Subset [tex]\( A \)[/tex]: A subset of [tex]\( U \)[/tex] with 120 elements ( [tex]\( n(A) = 120 \)[/tex] ).
3. Subset [tex]\( B \)[/tex]: Another subset of [tex]\( U \)[/tex] with 60 elements ( [tex]\( n(B) = 60 \)[/tex] ).
4. Complement of [tex]\( A \cup B \)[/tex]: The number of elements not in [tex]\( A \cup B \)[/tex] is 45 ( [tex]\( n((A \cup B)') = 45 \)[/tex] ).
The point is to show the relationships and overlapping sections in the Venn diagram:
- Let the part of [tex]\( A \)[/tex] that does not intersect [tex]\( B \)[/tex] be [tex]\( A_{\text{only}} \)[/tex].
- Let the part of [tex]\( B \)[/tex] that does not intersect [tex]\( A \)[/tex] be [tex]\( B_{\text{only}} \)[/tex].
- Let the overlapping part (intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex]) be represented as [tex]\( A \cap B \)[/tex].
#### (b) Finding the Value of Only [tex]\( A \)[/tex]
To find only [tex]\( A \)[/tex], we need to determine the value of [tex]\( A \)[/tex] excluding the part that intersects with [tex]\( B \)[/tex].
The values calculated:
1. Calculate [tex]\( n(A \cup B) \)[/tex]:
- Since [tex]\( n((A \cup B)') = 45 \)[/tex], the number of elements in [tex]\( A \cup B \)[/tex] can be found from:
[tex]\[ n(A \cup B) = n(U) - n((A \cup B)') \][/tex]
[tex]\[ n(A \cup B) = 210 - 45 \][/tex]
[tex]\[ n(A \cup B) = 165 \][/tex]
2. Calculate [tex]\( n(A \cap B) \)[/tex] using the principle of inclusion-exclusion:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Solving for [tex]\( n(A \cap B) \)[/tex]:
[tex]\[ 165 = 120 + 60 - n(A \cap B) \][/tex]
[tex]\[ 165 = 180 - n(A \cap B) \][/tex]
[tex]\[ n(A \cap B) = 180 - 165 \][/tex]
[tex]\[ n(A \cap B) = 15 \][/tex]
3. Calculate the Value of Only [tex]\( A \)[/tex]:
[tex]\[ \text{Only } A = n(A) - n(A \cap B) \][/tex]
[tex]\[ \text{Only } A = 120 - 15 \][/tex]
[tex]\[ \text{Only } A = 105 \][/tex]
#### (c) Finding the Value of [tex]\( A \cap B \)[/tex]
From our calculations above, we found that:
[tex]\[ n(A \cap B) = 15 \][/tex]
### Conclusion:
- (a): The Venn diagram would depict the total universal set [tex]\( U \)[/tex], with two overlapping subsets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]. [tex]\( A \cup B \)[/tex]'s complement contains 45 elements, meaning 165 elements fall within either [tex]\( A \)[/tex] or [tex]\( B \)[/tex] or their intersection.
- (b): The value of only [tex]\( A \)[/tex] is [tex]\( \boxed{105} \)[/tex].
- (c): The value of [tex]\( A \cap B \)[/tex] is [tex]\( \boxed{15} \)[/tex].
Thus, the calculations are neatly confirmed.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.