Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the period of the simple harmonic motion described by the equation [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex], we need to identify the angular frequency [tex]\( \omega \)[/tex] and use it to determine the period [tex]\( T \)[/tex].
1. Identify the form of the equation:
The given equation is [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex], which matches the general form for simple harmonic motion:
[tex]\[ d = A \sin(\omega t) \][/tex]
where [tex]\( A \)[/tex] is the amplitude, and [tex]\( \omega \)[/tex] is the angular frequency.
2. Determine the angular frequency [tex]\( \omega \)[/tex]:
From the equation [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex], we can see that the angular frequency [tex]\( \omega \)[/tex] is:
[tex]\[ \omega = \frac{\pi}{3} \][/tex]
3. Use the relationship between the angular frequency [tex]\( \omega \)[/tex] and the period [tex]\( T \)[/tex]:
The period [tex]\( T \)[/tex] of simple harmonic motion is given by the formula:
[tex]\[ T = \frac{2\pi}{\omega} \][/tex]
4. Substitute [tex]\( \omega = \frac{\pi}{3} \)[/tex] into the formula for the period:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{3}} \][/tex]
5. Simplify the expression:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6 \][/tex]
Thus, the period [tex]\( T \)[/tex] of the simple harmonic motion described by the equation [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex] is 6.
So, the period [tex]\( T \)[/tex] is [tex]\( \boxed{6} \)[/tex].
1. Identify the form of the equation:
The given equation is [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex], which matches the general form for simple harmonic motion:
[tex]\[ d = A \sin(\omega t) \][/tex]
where [tex]\( A \)[/tex] is the amplitude, and [tex]\( \omega \)[/tex] is the angular frequency.
2. Determine the angular frequency [tex]\( \omega \)[/tex]:
From the equation [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex], we can see that the angular frequency [tex]\( \omega \)[/tex] is:
[tex]\[ \omega = \frac{\pi}{3} \][/tex]
3. Use the relationship between the angular frequency [tex]\( \omega \)[/tex] and the period [tex]\( T \)[/tex]:
The period [tex]\( T \)[/tex] of simple harmonic motion is given by the formula:
[tex]\[ T = \frac{2\pi}{\omega} \][/tex]
4. Substitute [tex]\( \omega = \frac{\pi}{3} \)[/tex] into the formula for the period:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{3}} \][/tex]
5. Simplify the expression:
[tex]\[ T = \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6 \][/tex]
Thus, the period [tex]\( T \)[/tex] of the simple harmonic motion described by the equation [tex]\( d = 2 \sin \left(\frac{\pi}{3} t\right) \)[/tex] is 6.
So, the period [tex]\( T \)[/tex] is [tex]\( \boxed{6} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.