Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the maximum displacement from the equilibrium position for the given simple harmonic motion equation [tex]\( d = 9 \cos \left( \frac{\pi}{2} t \right) \)[/tex], follow these steps:
1. Identify the Amplitude: The equation of simple harmonic motion provided is in the form [tex]\( d = A \cos(\omega t) \)[/tex], where [tex]\( A \)[/tex] is the amplitude and [tex]\( \omega \)[/tex] is the angular frequency. In our case, the equation is [tex]\( d = 9 \cos \left( \frac{\pi}{2} t \right) \)[/tex].
2. Maximum Value of Cosine Function: The cosine function [tex]\( \cos(x) \)[/tex] can take values between -1 and 1. Therefore, its maximum value is 1.
3. Calculate Maximum Displacement: The maximum displacement from the equilibrium position occurs when the cosine function attains its maximum value, which is 1.
[tex]\[ d_{\text{max}} = 9 \cdot 1 = 9 \][/tex]
Thus, the maximum displacement from the equilibrium position is:
[tex]\[ \boxed{9} \][/tex]
1. Identify the Amplitude: The equation of simple harmonic motion provided is in the form [tex]\( d = A \cos(\omega t) \)[/tex], where [tex]\( A \)[/tex] is the amplitude and [tex]\( \omega \)[/tex] is the angular frequency. In our case, the equation is [tex]\( d = 9 \cos \left( \frac{\pi}{2} t \right) \)[/tex].
2. Maximum Value of Cosine Function: The cosine function [tex]\( \cos(x) \)[/tex] can take values between -1 and 1. Therefore, its maximum value is 1.
3. Calculate Maximum Displacement: The maximum displacement from the equilibrium position occurs when the cosine function attains its maximum value, which is 1.
[tex]\[ d_{\text{max}} = 9 \cdot 1 = 9 \][/tex]
Thus, the maximum displacement from the equilibrium position is:
[tex]\[ \boxed{9} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.