Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the maximum displacement from the equilibrium position for the given simple harmonic motion equation [tex]\( d = 9 \cos \left( \frac{\pi}{2} t \right) \)[/tex], follow these steps:
1. Identify the Amplitude: The equation of simple harmonic motion provided is in the form [tex]\( d = A \cos(\omega t) \)[/tex], where [tex]\( A \)[/tex] is the amplitude and [tex]\( \omega \)[/tex] is the angular frequency. In our case, the equation is [tex]\( d = 9 \cos \left( \frac{\pi}{2} t \right) \)[/tex].
2. Maximum Value of Cosine Function: The cosine function [tex]\( \cos(x) \)[/tex] can take values between -1 and 1. Therefore, its maximum value is 1.
3. Calculate Maximum Displacement: The maximum displacement from the equilibrium position occurs when the cosine function attains its maximum value, which is 1.
[tex]\[ d_{\text{max}} = 9 \cdot 1 = 9 \][/tex]
Thus, the maximum displacement from the equilibrium position is:
[tex]\[ \boxed{9} \][/tex]
1. Identify the Amplitude: The equation of simple harmonic motion provided is in the form [tex]\( d = A \cos(\omega t) \)[/tex], where [tex]\( A \)[/tex] is the amplitude and [tex]\( \omega \)[/tex] is the angular frequency. In our case, the equation is [tex]\( d = 9 \cos \left( \frac{\pi}{2} t \right) \)[/tex].
2. Maximum Value of Cosine Function: The cosine function [tex]\( \cos(x) \)[/tex] can take values between -1 and 1. Therefore, its maximum value is 1.
3. Calculate Maximum Displacement: The maximum displacement from the equilibrium position occurs when the cosine function attains its maximum value, which is 1.
[tex]\[ d_{\text{max}} = 9 \cdot 1 = 9 \][/tex]
Thus, the maximum displacement from the equilibrium position is:
[tex]\[ \boxed{9} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.