Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The equation [tex]\(\frac{2}{3} + \frac{3}{L_1} = \frac{3}{L_1} + \frac{2}{3}\)[/tex] represents the commutative property of addition for rational numbers.

Sagot :

Certainly! Let's analyze the given expression and understand the mathematical property it represents:

Given expression:
[tex]\[ \frac{2}{3} + \frac{3}{L_1} = \frac{3}{L_1} + \frac{2}{3} \][/tex]

Step-by-Step Solution:

1. Observe the Expression:
We notice that the expression on the left-hand side (LHS):
[tex]\[ \frac{2}{3} + \frac{3}{L_1} \][/tex]
is equal to the expression on the right-hand side (RHS):
[tex]\[ \frac{3}{L_1} + \frac{2}{3} \][/tex]

2. Identify the Property:
Both sides of the equation contain the same terms [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{3}{L_1}\)[/tex] but in different orders. The different order does not change the outcome of the addition. This is a key feature of a specific property in mathematics.

3. Commutative Property of Addition:
The property that states that changing the order of the terms in an addition operation does not change the sum is called the commutative property of addition. Formally, for any two rational numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + b = b + a \][/tex]
In our case, we can see that:
[tex]\[ \frac{2}{3} + \frac{3}{L_1} = \frac{3}{L_1} + \frac{2}{3} \][/tex]
This clearly illustrates that the order in which [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{3}{L_1}\)[/tex] are added does not affect the result.

4. Conclusion:
Therefore, the expression [tex]\(\frac{2}{3} + \frac{3}{L_1} = \frac{3}{L_1} + \frac{2}{3}\)[/tex] exemplifies the commutative property of addition of rational numbers.

Hence, the property of addition represented in the given expression is the commutative property.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.