Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, let's carefully analyze the given information about the functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] within the specified interval [tex]\((0, 3)\)[/tex].
### Analysis of Function [tex]\( f \)[/tex]
We have the values of function [tex]\( f \)[/tex] as given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & 80 & 26 & 8 & 2 & 0 & -\frac{2}{3} \\ \hline \end{array} \][/tex]
Focusing on the interval [tex]\( (0, 3) \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 26 \)[/tex]
- At [tex]\( x = 1 \)[/tex], [tex]\( f(1) = 8 \)[/tex]
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = 2 \)[/tex]
- At [tex]\( x = 3 \)[/tex], [tex]\( f(3) = 0 \)[/tex]
We observe the following:
- [tex]\( f(0) = 26 \geq 0 \)[/tex]
- [tex]\( f(1) = 8 \geq 0 \)[/tex]
- [tex]\( f(2) = 2 \geq 0 \)[/tex]
- [tex]\( f(3) = 0 \geq 0 \)[/tex]
Therefore, [tex]\( f(x) \)[/tex] is non-negative for [tex]\( 0 \leq x \leq 3 \)[/tex].
We can see that the function values are decreasing from 26 to 0 in this interval. Thus, [tex]\( f(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
### Analysis of Function [tex]\( g \)[/tex]
We know that [tex]\( g \)[/tex] is an exponential function passing through the points [tex]\( (0, 7) \)[/tex] and [tex]\( (3, 0) \)[/tex]. We need to check the behavior of [tex]\( g \)[/tex] on the interval [tex]\( (0, 3) \)[/tex].
Given [tex]\( g(0) = 7 \)[/tex] and [tex]\( g(3) = 0 \)[/tex]:
- Since [tex]\( g \)[/tex] is an exponential function and it is decreasing from [tex]\( 7 \)[/tex] to [tex]\( 0 \)[/tex], we can calculate the behavior by understanding the nature of exponential decay.
In general, an exponential function that decreases passes through these points would look something like [tex]\( g(x) = a e^{-bx} \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = a = 7 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( 7 e^{-3b} = 0 \)[/tex], solving for [tex]\( b \)[/tex] is not necessary as we know it is decreasing.
Hence, [tex]\( g(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex] because an exponential decay function always approaches zero but remains positive right up to the point where it becomes zero.
### Conclusion
Both functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
Therefore, the correct statement comparing the two functions on the interval [tex]\( (0, 3) \)[/tex] is:
[tex]\[ \boxed{\text{B. Both functions are positive and decreasing on the interval.}} \][/tex]
### Analysis of Function [tex]\( f \)[/tex]
We have the values of function [tex]\( f \)[/tex] as given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & 80 & 26 & 8 & 2 & 0 & -\frac{2}{3} \\ \hline \end{array} \][/tex]
Focusing on the interval [tex]\( (0, 3) \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 26 \)[/tex]
- At [tex]\( x = 1 \)[/tex], [tex]\( f(1) = 8 \)[/tex]
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = 2 \)[/tex]
- At [tex]\( x = 3 \)[/tex], [tex]\( f(3) = 0 \)[/tex]
We observe the following:
- [tex]\( f(0) = 26 \geq 0 \)[/tex]
- [tex]\( f(1) = 8 \geq 0 \)[/tex]
- [tex]\( f(2) = 2 \geq 0 \)[/tex]
- [tex]\( f(3) = 0 \geq 0 \)[/tex]
Therefore, [tex]\( f(x) \)[/tex] is non-negative for [tex]\( 0 \leq x \leq 3 \)[/tex].
We can see that the function values are decreasing from 26 to 0 in this interval. Thus, [tex]\( f(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
### Analysis of Function [tex]\( g \)[/tex]
We know that [tex]\( g \)[/tex] is an exponential function passing through the points [tex]\( (0, 7) \)[/tex] and [tex]\( (3, 0) \)[/tex]. We need to check the behavior of [tex]\( g \)[/tex] on the interval [tex]\( (0, 3) \)[/tex].
Given [tex]\( g(0) = 7 \)[/tex] and [tex]\( g(3) = 0 \)[/tex]:
- Since [tex]\( g \)[/tex] is an exponential function and it is decreasing from [tex]\( 7 \)[/tex] to [tex]\( 0 \)[/tex], we can calculate the behavior by understanding the nature of exponential decay.
In general, an exponential function that decreases passes through these points would look something like [tex]\( g(x) = a e^{-bx} \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = a = 7 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( 7 e^{-3b} = 0 \)[/tex], solving for [tex]\( b \)[/tex] is not necessary as we know it is decreasing.
Hence, [tex]\( g(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex] because an exponential decay function always approaches zero but remains positive right up to the point where it becomes zero.
### Conclusion
Both functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
Therefore, the correct statement comparing the two functions on the interval [tex]\( (0, 3) \)[/tex] is:
[tex]\[ \boxed{\text{B. Both functions are positive and decreasing on the interval.}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.