Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, let's carefully analyze the given information about the functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] within the specified interval [tex]\((0, 3)\)[/tex].
### Analysis of Function [tex]\( f \)[/tex]
We have the values of function [tex]\( f \)[/tex] as given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & 80 & 26 & 8 & 2 & 0 & -\frac{2}{3} \\ \hline \end{array} \][/tex]
Focusing on the interval [tex]\( (0, 3) \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 26 \)[/tex]
- At [tex]\( x = 1 \)[/tex], [tex]\( f(1) = 8 \)[/tex]
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = 2 \)[/tex]
- At [tex]\( x = 3 \)[/tex], [tex]\( f(3) = 0 \)[/tex]
We observe the following:
- [tex]\( f(0) = 26 \geq 0 \)[/tex]
- [tex]\( f(1) = 8 \geq 0 \)[/tex]
- [tex]\( f(2) = 2 \geq 0 \)[/tex]
- [tex]\( f(3) = 0 \geq 0 \)[/tex]
Therefore, [tex]\( f(x) \)[/tex] is non-negative for [tex]\( 0 \leq x \leq 3 \)[/tex].
We can see that the function values are decreasing from 26 to 0 in this interval. Thus, [tex]\( f(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
### Analysis of Function [tex]\( g \)[/tex]
We know that [tex]\( g \)[/tex] is an exponential function passing through the points [tex]\( (0, 7) \)[/tex] and [tex]\( (3, 0) \)[/tex]. We need to check the behavior of [tex]\( g \)[/tex] on the interval [tex]\( (0, 3) \)[/tex].
Given [tex]\( g(0) = 7 \)[/tex] and [tex]\( g(3) = 0 \)[/tex]:
- Since [tex]\( g \)[/tex] is an exponential function and it is decreasing from [tex]\( 7 \)[/tex] to [tex]\( 0 \)[/tex], we can calculate the behavior by understanding the nature of exponential decay.
In general, an exponential function that decreases passes through these points would look something like [tex]\( g(x) = a e^{-bx} \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = a = 7 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( 7 e^{-3b} = 0 \)[/tex], solving for [tex]\( b \)[/tex] is not necessary as we know it is decreasing.
Hence, [tex]\( g(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex] because an exponential decay function always approaches zero but remains positive right up to the point where it becomes zero.
### Conclusion
Both functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
Therefore, the correct statement comparing the two functions on the interval [tex]\( (0, 3) \)[/tex] is:
[tex]\[ \boxed{\text{B. Both functions are positive and decreasing on the interval.}} \][/tex]
### Analysis of Function [tex]\( f \)[/tex]
We have the values of function [tex]\( f \)[/tex] as given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & 80 & 26 & 8 & 2 & 0 & -\frac{2}{3} \\ \hline \end{array} \][/tex]
Focusing on the interval [tex]\( (0, 3) \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 26 \)[/tex]
- At [tex]\( x = 1 \)[/tex], [tex]\( f(1) = 8 \)[/tex]
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = 2 \)[/tex]
- At [tex]\( x = 3 \)[/tex], [tex]\( f(3) = 0 \)[/tex]
We observe the following:
- [tex]\( f(0) = 26 \geq 0 \)[/tex]
- [tex]\( f(1) = 8 \geq 0 \)[/tex]
- [tex]\( f(2) = 2 \geq 0 \)[/tex]
- [tex]\( f(3) = 0 \geq 0 \)[/tex]
Therefore, [tex]\( f(x) \)[/tex] is non-negative for [tex]\( 0 \leq x \leq 3 \)[/tex].
We can see that the function values are decreasing from 26 to 0 in this interval. Thus, [tex]\( f(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
### Analysis of Function [tex]\( g \)[/tex]
We know that [tex]\( g \)[/tex] is an exponential function passing through the points [tex]\( (0, 7) \)[/tex] and [tex]\( (3, 0) \)[/tex]. We need to check the behavior of [tex]\( g \)[/tex] on the interval [tex]\( (0, 3) \)[/tex].
Given [tex]\( g(0) = 7 \)[/tex] and [tex]\( g(3) = 0 \)[/tex]:
- Since [tex]\( g \)[/tex] is an exponential function and it is decreasing from [tex]\( 7 \)[/tex] to [tex]\( 0 \)[/tex], we can calculate the behavior by understanding the nature of exponential decay.
In general, an exponential function that decreases passes through these points would look something like [tex]\( g(x) = a e^{-bx} \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = a = 7 \)[/tex].
- At [tex]\( x = 3 \)[/tex], [tex]\( 7 e^{-3b} = 0 \)[/tex], solving for [tex]\( b \)[/tex] is not necessary as we know it is decreasing.
Hence, [tex]\( g(x) \)[/tex] is positive and decreasing on the interval [tex]\( (0, 3) \)[/tex] because an exponential decay function always approaches zero but remains positive right up to the point where it becomes zero.
### Conclusion
Both functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are positive and decreasing on the interval [tex]\( (0, 3) \)[/tex].
Therefore, the correct statement comparing the two functions on the interval [tex]\( (0, 3) \)[/tex] is:
[tex]\[ \boxed{\text{B. Both functions are positive and decreasing on the interval.}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.