Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's analyze each of the given trigonometric expressions step-by-step to determine which ones are identities.
### Identity A: [tex]\(\tan^2 x = 1 + \sec^2 x\)[/tex]
To check if this is an identity:
- Recall the Pythagorean identity for tangent and secant: [tex]\(\tan^2 x + 1 = \sec^2 x\)[/tex].
- Subtracting 1 from both sides: [tex]\(\tan^2 x = \sec^2 x - 1\)[/tex].
Thus, [tex]\(\tan^2 x = 1 + \sec^2 x\)[/tex] does not match the known identity. Therefore, Identity A is not an identity.
### Identity B: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex]
To check if this is an identity:
- Recall the Pythagorean identity for sine and cosine: [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex].
- Rearranging the terms: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex].
Thus, Identity B is indeed correct. Therefore, Identity B is an identity.
### Identity C: [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex]
To check if this is an identity:
- Recall the Pythagorean identity for cotangent and cosecant: [tex]\(\cot^2 x + 1 = \csc^2 x\)[/tex].
- Subtracting 1 from both sides: [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex].
Thus, Identity C is indeed correct. Therefore, Identity C is an identity.
### Identity D: [tex]\(\sin^2 x - \cos^2 x = 1\)[/tex]
To check if this is an identity:
- Given the Pythagorean identities, there is no known identity that states [tex]\(\sin^2 x - \cos^2 x = 1\)[/tex].
- Rearranging [tex]\(\sin^2 x - \cos^2 x\)[/tex] does not result in 1, since the standard rearranged form of the Pythagorean identity gives: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex] instead.
Thus, Identity D is not correct. Therefore, Identity D is not an identity.
### Summary
Based on the above analysis:
- Identity A: [tex]\(\tan^2 x = 1 + \sec^2 x\)[/tex] is not an identity.
- Identity B: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex] is an identity.
- Identity C: [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex] is an identity.
- Identity D: [tex]\(\sin^2 x - \cos^2 x = 1\)[/tex] is not an identity.
Hence, the identities among the provided options are [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex] and [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex].
### Identity A: [tex]\(\tan^2 x = 1 + \sec^2 x\)[/tex]
To check if this is an identity:
- Recall the Pythagorean identity for tangent and secant: [tex]\(\tan^2 x + 1 = \sec^2 x\)[/tex].
- Subtracting 1 from both sides: [tex]\(\tan^2 x = \sec^2 x - 1\)[/tex].
Thus, [tex]\(\tan^2 x = 1 + \sec^2 x\)[/tex] does not match the known identity. Therefore, Identity A is not an identity.
### Identity B: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex]
To check if this is an identity:
- Recall the Pythagorean identity for sine and cosine: [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex].
- Rearranging the terms: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex].
Thus, Identity B is indeed correct. Therefore, Identity B is an identity.
### Identity C: [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex]
To check if this is an identity:
- Recall the Pythagorean identity for cotangent and cosecant: [tex]\(\cot^2 x + 1 = \csc^2 x\)[/tex].
- Subtracting 1 from both sides: [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex].
Thus, Identity C is indeed correct. Therefore, Identity C is an identity.
### Identity D: [tex]\(\sin^2 x - \cos^2 x = 1\)[/tex]
To check if this is an identity:
- Given the Pythagorean identities, there is no known identity that states [tex]\(\sin^2 x - \cos^2 x = 1\)[/tex].
- Rearranging [tex]\(\sin^2 x - \cos^2 x\)[/tex] does not result in 1, since the standard rearranged form of the Pythagorean identity gives: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex] instead.
Thus, Identity D is not correct. Therefore, Identity D is not an identity.
### Summary
Based on the above analysis:
- Identity A: [tex]\(\tan^2 x = 1 + \sec^2 x\)[/tex] is not an identity.
- Identity B: [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex] is an identity.
- Identity C: [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex] is an identity.
- Identity D: [tex]\(\sin^2 x - \cos^2 x = 1\)[/tex] is not an identity.
Hence, the identities among the provided options are [tex]\(\sin^2 x = 1 - \cos^2 x\)[/tex] and [tex]\(\cot^2 x = \csc^2 x - 1\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.