At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\(-3x + 2 = 4^x + 2\)[/tex] graphically, follow these steps:
1. Rewrite the Equation:
[tex]\(-3x + 2 = 4^x + 2\)[/tex]
2. Simplify the Equation:
Subtract 2 from both sides:
[tex]\(-3x = 4^x\)[/tex]
3. Consider the Individual Functions:
- Let [tex]\(f(x) = -3x\)[/tex]
- Let [tex]\(g(x) = 4^x\)[/tex]
4. Graph the Functions:
Using a graphing tool (such as a graphing calculator, Desmos, or other plotting software), graph the two functions:
- [tex]\(f(x) = -3x\)[/tex]
- [tex]\(g(x) = 4^x\)[/tex]
5. Identify the Intersection Point:
The solution to the equation [tex]\(-3x = 4^x\)[/tex] is the [tex]\(x\)[/tex]-value where the graphs of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] intersect.
6. Estimate the Intersection Point:
Upon graphing these functions, locate the intersection point(s) on the graph.
By examining the graph:
- The line [tex]\(f(x) = -3x\)[/tex] is a straight line with a negative slope.
- The curve [tex]\(g(x) = 4^x\)[/tex] is an exponential function which grows rapidly.
From graphing or analyzing the plot:
- The intersection point on the graph closest to zero appears between the points [tex]\(-0.36\)[/tex] and [tex]\(-0.15\)[/tex], but exact detection would show it is around [tex]\(x \approx -0.24\)[/tex].
- There is another point where the curve intersects far to the right, but it aligns closely with [tex]\(x \approx 2.72\)[/tex].
Given the provided options, the closest correct answer among the selectable options is:
A. [tex]\(\mathbf{x \approx -0.15}\)[/tex]
B. [tex]\(x^2 \approx -0.36\)[/tex]
C. [tex]\(\mathbf{x \approx -0.24}\)[/tex]
D. [tex]\(\mathbf{x \approx 2.72}\)[/tex]
Among these, the selections [tex]\(x \approx -0.24\)[/tex] and [tex]\(x \approx 2.72\)[/tex] can be potential solutions found graphically. The exact solution closer in detail between these noticeable points where the intersection graphically pinpoints exactly [tex]\(x \approx -0.24\)[/tex].
Thus, the correct solution is:
C. [tex]\( x \approx -0.24 \)[/tex]
1. Rewrite the Equation:
[tex]\(-3x + 2 = 4^x + 2\)[/tex]
2. Simplify the Equation:
Subtract 2 from both sides:
[tex]\(-3x = 4^x\)[/tex]
3. Consider the Individual Functions:
- Let [tex]\(f(x) = -3x\)[/tex]
- Let [tex]\(g(x) = 4^x\)[/tex]
4. Graph the Functions:
Using a graphing tool (such as a graphing calculator, Desmos, or other plotting software), graph the two functions:
- [tex]\(f(x) = -3x\)[/tex]
- [tex]\(g(x) = 4^x\)[/tex]
5. Identify the Intersection Point:
The solution to the equation [tex]\(-3x = 4^x\)[/tex] is the [tex]\(x\)[/tex]-value where the graphs of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] intersect.
6. Estimate the Intersection Point:
Upon graphing these functions, locate the intersection point(s) on the graph.
By examining the graph:
- The line [tex]\(f(x) = -3x\)[/tex] is a straight line with a negative slope.
- The curve [tex]\(g(x) = 4^x\)[/tex] is an exponential function which grows rapidly.
From graphing or analyzing the plot:
- The intersection point on the graph closest to zero appears between the points [tex]\(-0.36\)[/tex] and [tex]\(-0.15\)[/tex], but exact detection would show it is around [tex]\(x \approx -0.24\)[/tex].
- There is another point where the curve intersects far to the right, but it aligns closely with [tex]\(x \approx 2.72\)[/tex].
Given the provided options, the closest correct answer among the selectable options is:
A. [tex]\(\mathbf{x \approx -0.15}\)[/tex]
B. [tex]\(x^2 \approx -0.36\)[/tex]
C. [tex]\(\mathbf{x \approx -0.24}\)[/tex]
D. [tex]\(\mathbf{x \approx 2.72}\)[/tex]
Among these, the selections [tex]\(x \approx -0.24\)[/tex] and [tex]\(x \approx 2.72\)[/tex] can be potential solutions found graphically. The exact solution closer in detail between these noticeable points where the intersection graphically pinpoints exactly [tex]\(x \approx -0.24\)[/tex].
Thus, the correct solution is:
C. [tex]\( x \approx -0.24 \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.