Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of [tex]\( x \)[/tex] that solves the equation [tex]\( 2^{-x} - 2 = 4^x - 1 \)[/tex] to the nearest fourth of a unit, we need to evaluate the equation for different values of [tex]\( x \)[/tex] and observe where the left-hand side (LHS) and the right-hand side (RHS) are closest to matching.
First, recall the equation:
[tex]\[ 2^{-x} - 2 = 4^x - 1. \][/tex]
Let's break this down step by step using some strategic test points:
1. When [tex]\( x \approx 0 \)[/tex] (Option A):
- LHS: [tex]\( 2^0 - 2 = 1 - 2 = -1 \)[/tex]
- RHS: [tex]\( 4^0 - 1 = 1 - 1 = 0 \)[/tex]
- Difference: [tex]\(-1 - 0 = -1\)[/tex]
2. When [tex]\( x \approx -0.75 \)[/tex] (Option B):
- This option is expressed somewhat unusually as [tex]\( x^{1/x} = -0.75 \)[/tex]. Evaluating this exactly as written leads to complex solutions, not pertinent here, so let's test [tex]\( x \approx -0.75 \)[/tex]:
- LHS: [tex]\( 2^{0.75} - 2 \approx 1.68179 - 2 = -0.31821 \)[/tex]
- RHS: [tex]\( 4^{-0.75} - 1 = 0.17678 - 1 = -0.82322 \)[/tex]
- Difference: [tex]\(-0.31821 - (-0.82322) \approx 0.50501\)[/tex]
3. When [tex]\( x = -0.50 \)[/tex] (Option C):
- LHS: [tex]\( 2^{0.5} - 2 \approx 1.41421 - 2 = -0.58579 \)[/tex]
- RHS: [tex]\( 4^{-0.5} - 1 \approx 0.5 - 1 = -0.5 \)[/tex]
- Difference: [tex]\(-0.58579 - (-0.5) \approx -0.08579 \)[/tex]
4. When [tex]\( x \approx -1 \)[/tex] (Option D):
- LHS: [tex]\( 2^1 - 2 = 2 - 2 = 0 \)[/tex]
- RHS: [tex]\( 4^{-1} - 1 = 0.25 - 1 = -0.75 \)[/tex]
- Difference: [tex]\(0 - (-0.75) = 0.75\)[/tex]
Upon reviewing these differences, we see that [tex]\( x = -0.50 \)[/tex] provides the smallest difference.
The solution to the equation to the nearest fourth of a unit is:
[tex]\[ \boxed{x = -0.50} \][/tex]
Thus, the correct answer is C.
First, recall the equation:
[tex]\[ 2^{-x} - 2 = 4^x - 1. \][/tex]
Let's break this down step by step using some strategic test points:
1. When [tex]\( x \approx 0 \)[/tex] (Option A):
- LHS: [tex]\( 2^0 - 2 = 1 - 2 = -1 \)[/tex]
- RHS: [tex]\( 4^0 - 1 = 1 - 1 = 0 \)[/tex]
- Difference: [tex]\(-1 - 0 = -1\)[/tex]
2. When [tex]\( x \approx -0.75 \)[/tex] (Option B):
- This option is expressed somewhat unusually as [tex]\( x^{1/x} = -0.75 \)[/tex]. Evaluating this exactly as written leads to complex solutions, not pertinent here, so let's test [tex]\( x \approx -0.75 \)[/tex]:
- LHS: [tex]\( 2^{0.75} - 2 \approx 1.68179 - 2 = -0.31821 \)[/tex]
- RHS: [tex]\( 4^{-0.75} - 1 = 0.17678 - 1 = -0.82322 \)[/tex]
- Difference: [tex]\(-0.31821 - (-0.82322) \approx 0.50501\)[/tex]
3. When [tex]\( x = -0.50 \)[/tex] (Option C):
- LHS: [tex]\( 2^{0.5} - 2 \approx 1.41421 - 2 = -0.58579 \)[/tex]
- RHS: [tex]\( 4^{-0.5} - 1 \approx 0.5 - 1 = -0.5 \)[/tex]
- Difference: [tex]\(-0.58579 - (-0.5) \approx -0.08579 \)[/tex]
4. When [tex]\( x \approx -1 \)[/tex] (Option D):
- LHS: [tex]\( 2^1 - 2 = 2 - 2 = 0 \)[/tex]
- RHS: [tex]\( 4^{-1} - 1 = 0.25 - 1 = -0.75 \)[/tex]
- Difference: [tex]\(0 - (-0.75) = 0.75\)[/tex]
Upon reviewing these differences, we see that [tex]\( x = -0.50 \)[/tex] provides the smallest difference.
The solution to the equation to the nearest fourth of a unit is:
[tex]\[ \boxed{x = -0.50} \][/tex]
Thus, the correct answer is C.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.