Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the 8th term of the sequence [tex]\(1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}\)[/tex], we first need to identify the pattern and rule governing the sequence.
We see the first term is [tex]\(1\)[/tex], the second term is [tex]\(-\frac{1}{2}\)[/tex], the third term is [tex]\(\frac{1}{4}\)[/tex], and the fourth term is [tex]\(-\frac{1}{8}\)[/tex].
Notice the following pattern:
- The first term [tex]\(a_1\)[/tex] = [tex]\(1\)[/tex]
- The second term [tex]\(a_2\)[/tex] = [tex]\(-\frac{1}{2}\)[/tex]
- The third term [tex]\(a_3\)[/tex] = [tex]\(\frac{1}{4}\)[/tex]
- The fourth term [tex]\(a_4\)[/tex] = [tex]\(-\frac{1}{8}\)[/tex]
We recognize that this is a geometric sequence. In a geometric sequence, each term is obtained by multiplying the previous term by a constant called the common ratio [tex]\(r\)[/tex].
From the first term to the second term:
[tex]\[ -\frac{1}{2} = 1 \times \left(-\frac{1}{2}\right) \][/tex]
So, the common ratio [tex]\(r\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
To find the 8th term of a geometric sequence, we use the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a_1 \times r^{(n-1)} \][/tex]
Given:
- [tex]\(a_1 = 1\)[/tex]
- [tex]\(r = -\frac{1}{2}\)[/tex]
- [tex]\(n = 8\)[/tex]
Plug these values into the formula:
[tex]\[ a_8 = 1 \times \left(-\frac{1}{2}\right)^{(8-1)} \][/tex]
[tex]\[ a_8 = 1 \times \left(-\frac{1}{2}\right)^7 \][/tex]
[tex]\[ a_8 = \left(-\frac{1}{2}\right)^7 \][/tex]
[tex]\[ a_8 = - \frac{1}{128} \][/tex]
Thus, the 8th term of this sequence is
[tex]\[ -\frac{1}{128} \][/tex]
So, the correct answer is:
D. [tex]\(-\frac{1}{128}\)[/tex]
We see the first term is [tex]\(1\)[/tex], the second term is [tex]\(-\frac{1}{2}\)[/tex], the third term is [tex]\(\frac{1}{4}\)[/tex], and the fourth term is [tex]\(-\frac{1}{8}\)[/tex].
Notice the following pattern:
- The first term [tex]\(a_1\)[/tex] = [tex]\(1\)[/tex]
- The second term [tex]\(a_2\)[/tex] = [tex]\(-\frac{1}{2}\)[/tex]
- The third term [tex]\(a_3\)[/tex] = [tex]\(\frac{1}{4}\)[/tex]
- The fourth term [tex]\(a_4\)[/tex] = [tex]\(-\frac{1}{8}\)[/tex]
We recognize that this is a geometric sequence. In a geometric sequence, each term is obtained by multiplying the previous term by a constant called the common ratio [tex]\(r\)[/tex].
From the first term to the second term:
[tex]\[ -\frac{1}{2} = 1 \times \left(-\frac{1}{2}\right) \][/tex]
So, the common ratio [tex]\(r\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
To find the 8th term of a geometric sequence, we use the formula for the [tex]\(n\)[/tex]-th term of a geometric sequence:
[tex]\[ a_n = a_1 \times r^{(n-1)} \][/tex]
Given:
- [tex]\(a_1 = 1\)[/tex]
- [tex]\(r = -\frac{1}{2}\)[/tex]
- [tex]\(n = 8\)[/tex]
Plug these values into the formula:
[tex]\[ a_8 = 1 \times \left(-\frac{1}{2}\right)^{(8-1)} \][/tex]
[tex]\[ a_8 = 1 \times \left(-\frac{1}{2}\right)^7 \][/tex]
[tex]\[ a_8 = \left(-\frac{1}{2}\right)^7 \][/tex]
[tex]\[ a_8 = - \frac{1}{128} \][/tex]
Thus, the 8th term of this sequence is
[tex]\[ -\frac{1}{128} \][/tex]
So, the correct answer is:
D. [tex]\(-\frac{1}{128}\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.