Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Solve for [tex]\( x \)[/tex] in the equation [tex]\( x^2 + 3x - 54 = 0 \)[/tex].

Sagot :

Certainly! Let's solve the quadratic equation [tex]\( x^2 + 3x - 54 = 0 \)[/tex] step-by-step.

### Step 1: Write down the quadratic equation
[tex]\[ x^2 + 3x - 54 = 0 \][/tex]

### Step 2: Identify the coefficients
The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. From the given equation, we identify the coefficients:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = -54 \)[/tex]

### Step 3: Calculate the discriminant
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 3^2 - 4(1)(-54) \][/tex]
[tex]\[ \Delta = 9 + 216 \][/tex]
[tex]\[ \Delta = 225 \][/tex]

### Step 4: Determine the roots using the quadratic formula
The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\Delta\)[/tex] into the formula:
[tex]\[ x = \frac{-3 \pm \sqrt{225}}{2(1)} \][/tex]
[tex]\[ x = \frac{-3 \pm 15}{2} \][/tex]

### Step 5: Calculate the two possible solutions
1. For the positive square root:
[tex]\[ x = \frac{-3 + 15}{2} = \frac{12}{2} = 6 \][/tex]

2. For the negative square root:
[tex]\[ x = \frac{-3 - 15}{2} = \frac{-18}{2} = -9 \][/tex]

### Step 6: Write down the solutions
The solutions to the equation [tex]\( x^2 + 3x - 54 = 0 \)[/tex] are:
[tex]\[ x = -9 \quad \text{and} \quad x = 6 \][/tex]

So, the solutions are [tex]\( x = -9 \)[/tex] and [tex]\( x = 6 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.