Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Simplify the expression:
[tex]\[ 5^{n-1} + \frac{5}{5^n} = 5 \frac{1}{5} \][/tex]


Sagot :

Let's solve the equation step-by-step:
[tex]\[ 5^{n-1} + \frac{5}{5^n} = 5 \frac{1}{5} \][/tex]

First, convert the mixed number [tex]\(5 \frac{1}{5}\)[/tex] to an improper fraction:
[tex]\[ 5 \frac{1}{5} = 5 + \frac{1}{5} = \frac{5 \cdot 5}{5} + \frac{1}{5} = \frac{25}{5} + \frac{1}{5} = \frac{26}{5} \][/tex]

So the equation becomes:
[tex]\[ 5^{n-1} + \frac{5}{5^n} = \frac{26}{5} \][/tex]

Next, let's simplify [tex]\(\frac{5}{5^n}\)[/tex]. We know that:
[tex]\[ \frac{5}{5^n} = 5 \cdot \frac{1}{5^n} = 5 \cdot 5^{-n} = 5^{1-n} \][/tex]

Therefore, the equation can be written as:
[tex]\[ 5^{n-1} + 5^{1-n} = \frac{26}{5} \][/tex]

We need to solve for [tex]\( n \)[/tex].

After solving the equation, we find that the values of [tex]\( n \)[/tex] are:
[tex]\[ n = 0 \][/tex]
and
[tex]\[ n = 2 \][/tex]

So, the solutions to the equation [tex]\( 5^{n-1} + \frac{5}{5^n} = 5 \frac{1}{5} \)[/tex] are:
[tex]\[ n = 0 \quad \text{and} \quad n = 2 \][/tex]