Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's solve this step-by-step.
Given:
- The numerator and denominator of a fraction are in the ratio [tex]\( \frac{3}{5} \)[/tex].
- If 9 is added to both the numerator and the denominator, the new ratio becomes [tex]\( \frac{15}{22} \)[/tex].
We need to find the original fraction.
1. Set up the original fraction:
Let the numerator be [tex]\( 3x \)[/tex] and the denominator be [tex]\( 5x \)[/tex]. Thus, the original fraction is:
[tex]\[ \frac{3x}{5x} \][/tex]
2. Adjust the fraction by adding 9 to both the numerator and the denominator:
If we add 9 to both, the new numerator and denominator will be [tex]\( 3x + 9 \)[/tex] and [tex]\( 5x + 9 \)[/tex], respectively. Therefore, the new fraction is:
[tex]\[ \frac{3x + 9}{5x + 9} \][/tex]
3. Set up the equation with the new ratio:
We know the new fraction is equal to [tex]\( \frac{15}{22} \)[/tex]:
[tex]\[ \frac{3x + 9}{5x + 9} = \frac{15}{22} \][/tex]
4. Cross-multiply to eliminate the fractions:
[tex]\[ 22(3x + 9) = 15(5x + 9) \][/tex]
5. Expand and simplify the equation:
[tex]\[ 66x + 198 = 75x + 135 \][/tex]
6. Move all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side:
[tex]\[ 66x - 75x = 135 - 198 \][/tex]
[tex]\[ -9x = -63 \][/tex]
7. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{63}{9} \][/tex]
[tex]\[ x = 7 \][/tex]
8. Calculate the original numerator and denominator:
- Numerator:
[tex]\[ 3x = 3 \times 7 = 21 \][/tex]
- Denominator:
[tex]\[ 5x = 5 \times 7 = 35 \][/tex]
9. Write the original fraction:
[tex]\[ \frac{21}{35} \][/tex]
10. Simplify the fraction if possible:
[tex]\[ \frac{21}{35} = \frac{3}{5} \text{ (already in the simplest form)} \][/tex]
Thus, the original fraction is [tex]\( \frac{21}{35} \)[/tex] which simplifies to [tex]\( \frac{3}{5} \)[/tex] and indeed matches our initial given ratio of 3:5.
Given:
- The numerator and denominator of a fraction are in the ratio [tex]\( \frac{3}{5} \)[/tex].
- If 9 is added to both the numerator and the denominator, the new ratio becomes [tex]\( \frac{15}{22} \)[/tex].
We need to find the original fraction.
1. Set up the original fraction:
Let the numerator be [tex]\( 3x \)[/tex] and the denominator be [tex]\( 5x \)[/tex]. Thus, the original fraction is:
[tex]\[ \frac{3x}{5x} \][/tex]
2. Adjust the fraction by adding 9 to both the numerator and the denominator:
If we add 9 to both, the new numerator and denominator will be [tex]\( 3x + 9 \)[/tex] and [tex]\( 5x + 9 \)[/tex], respectively. Therefore, the new fraction is:
[tex]\[ \frac{3x + 9}{5x + 9} \][/tex]
3. Set up the equation with the new ratio:
We know the new fraction is equal to [tex]\( \frac{15}{22} \)[/tex]:
[tex]\[ \frac{3x + 9}{5x + 9} = \frac{15}{22} \][/tex]
4. Cross-multiply to eliminate the fractions:
[tex]\[ 22(3x + 9) = 15(5x + 9) \][/tex]
5. Expand and simplify the equation:
[tex]\[ 66x + 198 = 75x + 135 \][/tex]
6. Move all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side:
[tex]\[ 66x - 75x = 135 - 198 \][/tex]
[tex]\[ -9x = -63 \][/tex]
7. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{63}{9} \][/tex]
[tex]\[ x = 7 \][/tex]
8. Calculate the original numerator and denominator:
- Numerator:
[tex]\[ 3x = 3 \times 7 = 21 \][/tex]
- Denominator:
[tex]\[ 5x = 5 \times 7 = 35 \][/tex]
9. Write the original fraction:
[tex]\[ \frac{21}{35} \][/tex]
10. Simplify the fraction if possible:
[tex]\[ \frac{21}{35} = \frac{3}{5} \text{ (already in the simplest form)} \][/tex]
Thus, the original fraction is [tex]\( \frac{21}{35} \)[/tex] which simplifies to [tex]\( \frac{3}{5} \)[/tex] and indeed matches our initial given ratio of 3:5.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.