Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the function [tex]\( g(x) \)[/tex] after shifting the reciprocal parent function [tex]\( f(x) = \frac{1}{x} \)[/tex], we need to properly understand how horizontal and vertical shifts impact the function.
1. Horizontal Shift:
A shift to the left by 8 units means that for every [tex]\( x \)[/tex] in [tex]\( f(x) \)[/tex], we replace [tex]\( x \)[/tex] with [tex]\( x + 8 \)[/tex]. This is because substituting [tex]\( x \)[/tex] with [tex]\( x + 8 \)[/tex] in the function [tex]\( f(x) \)[/tex] essentially moves the graph to the left by 8 units:
[tex]\[ f(x + 8) = \frac{1}{x + 8} \][/tex]
2. Vertical Shift:
A shift up by 5 units involves simply adding 5 to the function. This is because adding a constant to the function [tex]\( f(x) \)[/tex] shifts its graph vertically:
[tex]\[ f(x + 8) + 5 = \frac{1}{x + 8} + 5 \][/tex]
Combining these two transformations, we get the new function [tex]\( g(x) \)[/tex] from [tex]\( f(x) \)[/tex]:
[tex]\[ g(x) = \frac{1}{x + 8} + 5 \][/tex]
Therefore, the correct option is:
[tex]\[ \text{D. } g(x) = \frac{1}{x + 8} + 5 \][/tex]
1. Horizontal Shift:
A shift to the left by 8 units means that for every [tex]\( x \)[/tex] in [tex]\( f(x) \)[/tex], we replace [tex]\( x \)[/tex] with [tex]\( x + 8 \)[/tex]. This is because substituting [tex]\( x \)[/tex] with [tex]\( x + 8 \)[/tex] in the function [tex]\( f(x) \)[/tex] essentially moves the graph to the left by 8 units:
[tex]\[ f(x + 8) = \frac{1}{x + 8} \][/tex]
2. Vertical Shift:
A shift up by 5 units involves simply adding 5 to the function. This is because adding a constant to the function [tex]\( f(x) \)[/tex] shifts its graph vertically:
[tex]\[ f(x + 8) + 5 = \frac{1}{x + 8} + 5 \][/tex]
Combining these two transformations, we get the new function [tex]\( g(x) \)[/tex] from [tex]\( f(x) \)[/tex]:
[tex]\[ g(x) = \frac{1}{x + 8} + 5 \][/tex]
Therefore, the correct option is:
[tex]\[ \text{D. } g(x) = \frac{1}{x + 8} + 5 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.