Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the given table systematically:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -4 & -3 & -2 & -1 & 0 \\ \hline g(x) & -1 & 0 & -1 & -4 & -9 & -16 \\ \hline \end{array} \][/tex]
We are examining the function [tex]\( g \)[/tex] over the set of [tex]\( x \)[/tex]-values given: [tex]\( \{-5, -4, -3, -2, -1, 0\} \)[/tex].
### Step-by-Step Analysis:
1. Identifying the nature of the function:
- The function [tex]\( g \)[/tex] is quadratic, which means it could be concave up (bowl-shaped) or concave down (inverted bowl-shaped).
2. Behavior of [tex]\( g(x) \)[/tex]:
- As [tex]\( x \)[/tex] increases from [tex]\(-5\)[/tex] to [tex]\( 0 \)[/tex], we observe the following pattern in [tex]\( g(x) \)[/tex]:
[tex]\[ g(-5) = -1 \quad \text{(increasing to)} \quad g(-4) = 0 \quad \text{(then decreasing continuously)} \quad g(0) = -16 \][/tex]
- This indicates a downward trend in [tex]\( g(x) \)[/tex] after reaching [tex]\( x = -4 \)[/tex].
3. Finding the minimum value:
- From the values given, we identify the minimum value of [tex]\( g(x) \)[/tex] in this range:
[tex]\[ g(0) = -16 \][/tex]
- This is the lowest value of [tex]\( g(x) \)[/tex] over the given interval.
4. Location of the minimum value:
- The [tex]\( x \)[/tex]-value corresponding to this minimum value is [tex]\( x = 0 \)[/tex].
- In a function, when [tex]\( x = 0 \)[/tex], it also represents the [tex]\( y \)[/tex]-intercept, as it is the point where the graph intersects the [tex]\( y \)[/tex]-axis.
5. Selecting the correct statement:
- Comparing all given options, it is evident that the correct statement describes the minimum value's location related to the [tex]\( y \)[/tex]-intercept.
Therefore, the correct statement is:
D. The minimum occurs at the function's [tex]\( y \)[/tex]-intercept.
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -4 & -3 & -2 & -1 & 0 \\ \hline g(x) & -1 & 0 & -1 & -4 & -9 & -16 \\ \hline \end{array} \][/tex]
We are examining the function [tex]\( g \)[/tex] over the set of [tex]\( x \)[/tex]-values given: [tex]\( \{-5, -4, -3, -2, -1, 0\} \)[/tex].
### Step-by-Step Analysis:
1. Identifying the nature of the function:
- The function [tex]\( g \)[/tex] is quadratic, which means it could be concave up (bowl-shaped) or concave down (inverted bowl-shaped).
2. Behavior of [tex]\( g(x) \)[/tex]:
- As [tex]\( x \)[/tex] increases from [tex]\(-5\)[/tex] to [tex]\( 0 \)[/tex], we observe the following pattern in [tex]\( g(x) \)[/tex]:
[tex]\[ g(-5) = -1 \quad \text{(increasing to)} \quad g(-4) = 0 \quad \text{(then decreasing continuously)} \quad g(0) = -16 \][/tex]
- This indicates a downward trend in [tex]\( g(x) \)[/tex] after reaching [tex]\( x = -4 \)[/tex].
3. Finding the minimum value:
- From the values given, we identify the minimum value of [tex]\( g(x) \)[/tex] in this range:
[tex]\[ g(0) = -16 \][/tex]
- This is the lowest value of [tex]\( g(x) \)[/tex] over the given interval.
4. Location of the minimum value:
- The [tex]\( x \)[/tex]-value corresponding to this minimum value is [tex]\( x = 0 \)[/tex].
- In a function, when [tex]\( x = 0 \)[/tex], it also represents the [tex]\( y \)[/tex]-intercept, as it is the point where the graph intersects the [tex]\( y \)[/tex]-axis.
5. Selecting the correct statement:
- Comparing all given options, it is evident that the correct statement describes the minimum value's location related to the [tex]\( y \)[/tex]-intercept.
Therefore, the correct statement is:
D. The minimum occurs at the function's [tex]\( y \)[/tex]-intercept.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.