Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's analyze the logical statements given the assumption that [tex]\( p \)[/tex] (It is raining) is true. We need to determine which two statements would logically be true.
### Logical Statements Breakdown:
1. [tex]\( p \vee q \)[/tex] (p OR q)
- This statement is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- Since [tex]\( p \)[/tex] is true, [tex]\( p \vee q \)[/tex] will always be true regardless of the value of [tex]\( q \)[/tex].
2. [tex]\( p \wedge q \)[/tex] (p AND q)
- This statement is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true.
- We know [tex]\( p \)[/tex] is true, but we have no information about [tex]\( q \)[/tex]. Therefore, we cannot determine the truth value of [tex]\( p \wedge q \)[/tex].
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
- This statement is true if whenever [tex]\( q \)[/tex] is true, [tex]\( p \)[/tex] must also be true. Another way to express this is that [tex]\( q \rightarrow p \)[/tex] is false only if [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false.
- Since [tex]\( p \)[/tex] is true, [tex]\( q \rightarrow p \)[/tex] will always be true irrespective of the value of [tex]\( q \)[/tex].
4. [tex]\( p - q \)[/tex]
- This is not a standard logical notation. Without a proper definition, we cannot evaluate this statement.
5. [tex]\( q - p \)[/tex]
- Similarly, this is not a standard logical notation. Without a clear definition, we cannot evaluate this statement.
### Conclusion:
The two statements that must logically be true given that [tex]\( p \)[/tex] is true are:
1. [tex]\( p \vee q \)[/tex] (p OR q)
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
Therefore, the two logically true statements are:
[tex]\[ \boxed{p \vee q \text{ (p OR q) and } q \rightarrow p \text{ (q implies p)}} \][/tex]
### Logical Statements Breakdown:
1. [tex]\( p \vee q \)[/tex] (p OR q)
- This statement is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- Since [tex]\( p \)[/tex] is true, [tex]\( p \vee q \)[/tex] will always be true regardless of the value of [tex]\( q \)[/tex].
2. [tex]\( p \wedge q \)[/tex] (p AND q)
- This statement is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true.
- We know [tex]\( p \)[/tex] is true, but we have no information about [tex]\( q \)[/tex]. Therefore, we cannot determine the truth value of [tex]\( p \wedge q \)[/tex].
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
- This statement is true if whenever [tex]\( q \)[/tex] is true, [tex]\( p \)[/tex] must also be true. Another way to express this is that [tex]\( q \rightarrow p \)[/tex] is false only if [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false.
- Since [tex]\( p \)[/tex] is true, [tex]\( q \rightarrow p \)[/tex] will always be true irrespective of the value of [tex]\( q \)[/tex].
4. [tex]\( p - q \)[/tex]
- This is not a standard logical notation. Without a proper definition, we cannot evaluate this statement.
5. [tex]\( q - p \)[/tex]
- Similarly, this is not a standard logical notation. Without a clear definition, we cannot evaluate this statement.
### Conclusion:
The two statements that must logically be true given that [tex]\( p \)[/tex] is true are:
1. [tex]\( p \vee q \)[/tex] (p OR q)
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
Therefore, the two logically true statements are:
[tex]\[ \boxed{p \vee q \text{ (p OR q) and } q \rightarrow p \text{ (q implies p)}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.