Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's analyze the logical statements given the assumption that [tex]\( p \)[/tex] (It is raining) is true. We need to determine which two statements would logically be true.
### Logical Statements Breakdown:
1. [tex]\( p \vee q \)[/tex] (p OR q)
- This statement is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- Since [tex]\( p \)[/tex] is true, [tex]\( p \vee q \)[/tex] will always be true regardless of the value of [tex]\( q \)[/tex].
2. [tex]\( p \wedge q \)[/tex] (p AND q)
- This statement is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true.
- We know [tex]\( p \)[/tex] is true, but we have no information about [tex]\( q \)[/tex]. Therefore, we cannot determine the truth value of [tex]\( p \wedge q \)[/tex].
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
- This statement is true if whenever [tex]\( q \)[/tex] is true, [tex]\( p \)[/tex] must also be true. Another way to express this is that [tex]\( q \rightarrow p \)[/tex] is false only if [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false.
- Since [tex]\( p \)[/tex] is true, [tex]\( q \rightarrow p \)[/tex] will always be true irrespective of the value of [tex]\( q \)[/tex].
4. [tex]\( p - q \)[/tex]
- This is not a standard logical notation. Without a proper definition, we cannot evaluate this statement.
5. [tex]\( q - p \)[/tex]
- Similarly, this is not a standard logical notation. Without a clear definition, we cannot evaluate this statement.
### Conclusion:
The two statements that must logically be true given that [tex]\( p \)[/tex] is true are:
1. [tex]\( p \vee q \)[/tex] (p OR q)
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
Therefore, the two logically true statements are:
[tex]\[ \boxed{p \vee q \text{ (p OR q) and } q \rightarrow p \text{ (q implies p)}} \][/tex]
### Logical Statements Breakdown:
1. [tex]\( p \vee q \)[/tex] (p OR q)
- This statement is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- Since [tex]\( p \)[/tex] is true, [tex]\( p \vee q \)[/tex] will always be true regardless of the value of [tex]\( q \)[/tex].
2. [tex]\( p \wedge q \)[/tex] (p AND q)
- This statement is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true.
- We know [tex]\( p \)[/tex] is true, but we have no information about [tex]\( q \)[/tex]. Therefore, we cannot determine the truth value of [tex]\( p \wedge q \)[/tex].
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
- This statement is true if whenever [tex]\( q \)[/tex] is true, [tex]\( p \)[/tex] must also be true. Another way to express this is that [tex]\( q \rightarrow p \)[/tex] is false only if [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false.
- Since [tex]\( p \)[/tex] is true, [tex]\( q \rightarrow p \)[/tex] will always be true irrespective of the value of [tex]\( q \)[/tex].
4. [tex]\( p - q \)[/tex]
- This is not a standard logical notation. Without a proper definition, we cannot evaluate this statement.
5. [tex]\( q - p \)[/tex]
- Similarly, this is not a standard logical notation. Without a clear definition, we cannot evaluate this statement.
### Conclusion:
The two statements that must logically be true given that [tex]\( p \)[/tex] is true are:
1. [tex]\( p \vee q \)[/tex] (p OR q)
3. [tex]\( q \rightarrow p \)[/tex] (q implies p)
Therefore, the two logically true statements are:
[tex]\[ \boxed{p \vee q \text{ (p OR q) and } q \rightarrow p \text{ (q implies p)}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.