Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given that the ionization energy of the ground state of a certain hydrogen-like species is [tex]\( 106.82 \times 10^{-18} \)[/tex] J/atom, we need to determine the number of protons (denoted as [tex]\( Z \)[/tex]) in the nucleus of this species.
To solve this, we need to use the formula for the ionization energy of a hydrogen-like species:
[tex]\[ E = Z^2 \times R_H \][/tex]
where [tex]\( E \)[/tex] is the ionization energy, [tex]\( Z \)[/tex] is the number of protons in the nucleus, and [tex]\( R_H \)[/tex] is the Rydberg constant for hydrogen ([tex]\( 2.18 \times 10^{-18} \)[/tex] J).
The steps to find [tex]\( Z \)[/tex] are as follows:
1. Set up the equation: Use the given ionization energy [tex]\( E \)[/tex] and the Rydberg constant [tex]\( R_H \)[/tex]:
[tex]\[ 106.82 \times 10^{-18} = Z^2 \times 2.18 \times 10^{-18} \][/tex]
2. Solve for [tex]\( Z^2 \)[/tex]: Isolate [tex]\( Z^2 \)[/tex] by dividing both sides of the equation by [tex]\( 2.18 \times 10^{-18} \)[/tex]:
[tex]\[ Z^2 = \frac{106.82 \times 10^{-18}}{2.18 \times 10^{-18}} \][/tex]
3. Calculate the value: Perform the division:
[tex]\[ Z^2 = \frac{106.82}{2.18} \][/tex]
4. Simplify the division:
[tex]\[ Z^2 \approx 49 \][/tex]
5. Find [tex]\( Z \)[/tex]: Take the square root of [tex]\( Z^2 \)[/tex]:
[tex]\[ Z = \sqrt{49} \][/tex]
[tex]\[ Z = 7 \][/tex]
Thus, the number of protons contained in the nucleus of this hydrogen-like species is [tex]\( 7 \)[/tex].
The correct answer is:
e) 7
To solve this, we need to use the formula for the ionization energy of a hydrogen-like species:
[tex]\[ E = Z^2 \times R_H \][/tex]
where [tex]\( E \)[/tex] is the ionization energy, [tex]\( Z \)[/tex] is the number of protons in the nucleus, and [tex]\( R_H \)[/tex] is the Rydberg constant for hydrogen ([tex]\( 2.18 \times 10^{-18} \)[/tex] J).
The steps to find [tex]\( Z \)[/tex] are as follows:
1. Set up the equation: Use the given ionization energy [tex]\( E \)[/tex] and the Rydberg constant [tex]\( R_H \)[/tex]:
[tex]\[ 106.82 \times 10^{-18} = Z^2 \times 2.18 \times 10^{-18} \][/tex]
2. Solve for [tex]\( Z^2 \)[/tex]: Isolate [tex]\( Z^2 \)[/tex] by dividing both sides of the equation by [tex]\( 2.18 \times 10^{-18} \)[/tex]:
[tex]\[ Z^2 = \frac{106.82 \times 10^{-18}}{2.18 \times 10^{-18}} \][/tex]
3. Calculate the value: Perform the division:
[tex]\[ Z^2 = \frac{106.82}{2.18} \][/tex]
4. Simplify the division:
[tex]\[ Z^2 \approx 49 \][/tex]
5. Find [tex]\( Z \)[/tex]: Take the square root of [tex]\( Z^2 \)[/tex]:
[tex]\[ Z = \sqrt{49} \][/tex]
[tex]\[ Z = 7 \][/tex]
Thus, the number of protons contained in the nucleus of this hydrogen-like species is [tex]\( 7 \)[/tex].
The correct answer is:
e) 7
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.