Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Given that the ionization energy of the ground state of a certain hydrogen-like species is [tex]\( 106.82 \times 10^{-18} \)[/tex] J/atom, we need to determine the number of protons (denoted as [tex]\( Z \)[/tex]) in the nucleus of this species.
To solve this, we need to use the formula for the ionization energy of a hydrogen-like species:
[tex]\[ E = Z^2 \times R_H \][/tex]
where [tex]\( E \)[/tex] is the ionization energy, [tex]\( Z \)[/tex] is the number of protons in the nucleus, and [tex]\( R_H \)[/tex] is the Rydberg constant for hydrogen ([tex]\( 2.18 \times 10^{-18} \)[/tex] J).
The steps to find [tex]\( Z \)[/tex] are as follows:
1. Set up the equation: Use the given ionization energy [tex]\( E \)[/tex] and the Rydberg constant [tex]\( R_H \)[/tex]:
[tex]\[ 106.82 \times 10^{-18} = Z^2 \times 2.18 \times 10^{-18} \][/tex]
2. Solve for [tex]\( Z^2 \)[/tex]: Isolate [tex]\( Z^2 \)[/tex] by dividing both sides of the equation by [tex]\( 2.18 \times 10^{-18} \)[/tex]:
[tex]\[ Z^2 = \frac{106.82 \times 10^{-18}}{2.18 \times 10^{-18}} \][/tex]
3. Calculate the value: Perform the division:
[tex]\[ Z^2 = \frac{106.82}{2.18} \][/tex]
4. Simplify the division:
[tex]\[ Z^2 \approx 49 \][/tex]
5. Find [tex]\( Z \)[/tex]: Take the square root of [tex]\( Z^2 \)[/tex]:
[tex]\[ Z = \sqrt{49} \][/tex]
[tex]\[ Z = 7 \][/tex]
Thus, the number of protons contained in the nucleus of this hydrogen-like species is [tex]\( 7 \)[/tex].
The correct answer is:
e) 7
To solve this, we need to use the formula for the ionization energy of a hydrogen-like species:
[tex]\[ E = Z^2 \times R_H \][/tex]
where [tex]\( E \)[/tex] is the ionization energy, [tex]\( Z \)[/tex] is the number of protons in the nucleus, and [tex]\( R_H \)[/tex] is the Rydberg constant for hydrogen ([tex]\( 2.18 \times 10^{-18} \)[/tex] J).
The steps to find [tex]\( Z \)[/tex] are as follows:
1. Set up the equation: Use the given ionization energy [tex]\( E \)[/tex] and the Rydberg constant [tex]\( R_H \)[/tex]:
[tex]\[ 106.82 \times 10^{-18} = Z^2 \times 2.18 \times 10^{-18} \][/tex]
2. Solve for [tex]\( Z^2 \)[/tex]: Isolate [tex]\( Z^2 \)[/tex] by dividing both sides of the equation by [tex]\( 2.18 \times 10^{-18} \)[/tex]:
[tex]\[ Z^2 = \frac{106.82 \times 10^{-18}}{2.18 \times 10^{-18}} \][/tex]
3. Calculate the value: Perform the division:
[tex]\[ Z^2 = \frac{106.82}{2.18} \][/tex]
4. Simplify the division:
[tex]\[ Z^2 \approx 49 \][/tex]
5. Find [tex]\( Z \)[/tex]: Take the square root of [tex]\( Z^2 \)[/tex]:
[tex]\[ Z = \sqrt{49} \][/tex]
[tex]\[ Z = 7 \][/tex]
Thus, the number of protons contained in the nucleus of this hydrogen-like species is [tex]\( 7 \)[/tex].
The correct answer is:
e) 7
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.