At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's start with the given equation of the circle in general form:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
To convert this to the standard form, we need to complete the square for both [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
1. Complete the square for [tex]\( x \)[/tex]:
[tex]\[ x^2 + 8x \][/tex]
To complete the square, add and subtract [tex]\( 16 \)[/tex] (since [tex]\((\frac{8}{2})^2 = 16\)[/tex]):
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
2. Complete the square for [tex]\( y \)[/tex]:
[tex]\[ y^2 + 22y \][/tex]
To complete the square, add and subtract [tex]\( 121 \)[/tex] (since [tex]\((\frac{22}{2})^2 = 121\)[/tex]):
[tex]\[ y^2 + 22y = (y + 11)^2 - 121 \][/tex]
3. Rewrite the original equation using the completed squares:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
Substitute the completed squares:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine the constants:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
5. Isolate the squared terms:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
Therefore, the equation in standard form is:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
The center of the circle is at the point [tex]\( (-4, -11) \)[/tex].
The radius of the circle is:
[tex]\[ \sqrt{100} = 10 \][/tex]
So, filling in the boxes, we get:
The equation of this circle in standard form is:
[tex]\[ (x + \square)^2 + (y + \square)^2 = \square \][/tex]
with the boxes filled in as follows:
1. [tex]\(\square\)[/tex]: -4
2. [tex]\(\square\)[/tex]: -11
3. [tex]\(\square\)[/tex]: 100
The center of the circle is at the point:
[tex]\[ (\square, \square) \][/tex]
with the boxes filled in as follows:
1. [tex]\(\square\)[/tex]: -4
2. [tex]\(\square\)[/tex]: -11
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
To convert this to the standard form, we need to complete the square for both [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
1. Complete the square for [tex]\( x \)[/tex]:
[tex]\[ x^2 + 8x \][/tex]
To complete the square, add and subtract [tex]\( 16 \)[/tex] (since [tex]\((\frac{8}{2})^2 = 16\)[/tex]):
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
2. Complete the square for [tex]\( y \)[/tex]:
[tex]\[ y^2 + 22y \][/tex]
To complete the square, add and subtract [tex]\( 121 \)[/tex] (since [tex]\((\frac{22}{2})^2 = 121\)[/tex]):
[tex]\[ y^2 + 22y = (y + 11)^2 - 121 \][/tex]
3. Rewrite the original equation using the completed squares:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
Substitute the completed squares:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine the constants:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
5. Isolate the squared terms:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
Therefore, the equation in standard form is:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
The center of the circle is at the point [tex]\( (-4, -11) \)[/tex].
The radius of the circle is:
[tex]\[ \sqrt{100} = 10 \][/tex]
So, filling in the boxes, we get:
The equation of this circle in standard form is:
[tex]\[ (x + \square)^2 + (y + \square)^2 = \square \][/tex]
with the boxes filled in as follows:
1. [tex]\(\square\)[/tex]: -4
2. [tex]\(\square\)[/tex]: -11
3. [tex]\(\square\)[/tex]: 100
The center of the circle is at the point:
[tex]\[ (\square, \square) \][/tex]
with the boxes filled in as follows:
1. [tex]\(\square\)[/tex]: -4
2. [tex]\(\square\)[/tex]: -11
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.