Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine how the graph of [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex] differs from the graph of [tex]\(f(x) = |x|\)[/tex], we need to analyze the transformations applied to the basic absolute value function [tex]\(f(x)\)[/tex].
1. Horizontal Stretch:
- In [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex], the term [tex]\(\frac{1}{4}x\)[/tex] inside the absolute value indicates a horizontal transformation. Specifically, multiplying [tex]\(x\)[/tex] by [tex]\(\frac{1}{4}\)[/tex] stretches the graph horizontally by a factor of 4. This is because [tex]\(|x|\)[/tex] compressed horizontally would become [tex]\(|kx|\)[/tex] where [tex]\(0 < k < 1\)[/tex]; here [tex]\(k = \frac{1}{4}\)[/tex], and this represents a horizontal stretch by the reciprocal factor, which is 4.
2. Vertical Shift:
- The term [tex]\(+6\)[/tex] outside the absolute value indicates a vertical shift. Specifically, it shifts the graph up by 6 units.
Combining these transformations, we can summarize the effects on the graph of [tex]\(f(x) = |x|\)[/tex] to obtain the graph of [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex] as follows:
- The graph is horizontally stretched by a factor of 4.
- The graph is shifted up by 6 units.
Let's match these transformations with the provided choices:
- Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
- Choice B: The graph of [tex]\(h(x)\)[/tex] is compressed vertically by a factor of 4 and shifted right 6 units. (Not correct regarding the vertical compression and horizontal shift.)
- Choice C: The graph of [tex]\(h(x)\)[/tex] is compressed horizontally by a factor of 4 and shifted up 6 units. (Not correct regarding the horizontal compression.)
- Choice D: The graph of [tex]\(h(x)\)[/tex] is stretched vertically by a factor of 4 and shifted right 6 units. (Not correct regarding vertical stretch and horizontal shift.)
The correct transformation matches Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
Therefore, the correct answer is A.
1. Horizontal Stretch:
- In [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex], the term [tex]\(\frac{1}{4}x\)[/tex] inside the absolute value indicates a horizontal transformation. Specifically, multiplying [tex]\(x\)[/tex] by [tex]\(\frac{1}{4}\)[/tex] stretches the graph horizontally by a factor of 4. This is because [tex]\(|x|\)[/tex] compressed horizontally would become [tex]\(|kx|\)[/tex] where [tex]\(0 < k < 1\)[/tex]; here [tex]\(k = \frac{1}{4}\)[/tex], and this represents a horizontal stretch by the reciprocal factor, which is 4.
2. Vertical Shift:
- The term [tex]\(+6\)[/tex] outside the absolute value indicates a vertical shift. Specifically, it shifts the graph up by 6 units.
Combining these transformations, we can summarize the effects on the graph of [tex]\(f(x) = |x|\)[/tex] to obtain the graph of [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex] as follows:
- The graph is horizontally stretched by a factor of 4.
- The graph is shifted up by 6 units.
Let's match these transformations with the provided choices:
- Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
- Choice B: The graph of [tex]\(h(x)\)[/tex] is compressed vertically by a factor of 4 and shifted right 6 units. (Not correct regarding the vertical compression and horizontal shift.)
- Choice C: The graph of [tex]\(h(x)\)[/tex] is compressed horizontally by a factor of 4 and shifted up 6 units. (Not correct regarding the horizontal compression.)
- Choice D: The graph of [tex]\(h(x)\)[/tex] is stretched vertically by a factor of 4 and shifted right 6 units. (Not correct regarding vertical stretch and horizontal shift.)
The correct transformation matches Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
Therefore, the correct answer is A.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.