Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine how the graph of [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex] differs from the graph of [tex]\(f(x) = |x|\)[/tex], we need to analyze the transformations applied to the basic absolute value function [tex]\(f(x)\)[/tex].
1. Horizontal Stretch:
- In [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex], the term [tex]\(\frac{1}{4}x\)[/tex] inside the absolute value indicates a horizontal transformation. Specifically, multiplying [tex]\(x\)[/tex] by [tex]\(\frac{1}{4}\)[/tex] stretches the graph horizontally by a factor of 4. This is because [tex]\(|x|\)[/tex] compressed horizontally would become [tex]\(|kx|\)[/tex] where [tex]\(0 < k < 1\)[/tex]; here [tex]\(k = \frac{1}{4}\)[/tex], and this represents a horizontal stretch by the reciprocal factor, which is 4.
2. Vertical Shift:
- The term [tex]\(+6\)[/tex] outside the absolute value indicates a vertical shift. Specifically, it shifts the graph up by 6 units.
Combining these transformations, we can summarize the effects on the graph of [tex]\(f(x) = |x|\)[/tex] to obtain the graph of [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex] as follows:
- The graph is horizontally stretched by a factor of 4.
- The graph is shifted up by 6 units.
Let's match these transformations with the provided choices:
- Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
- Choice B: The graph of [tex]\(h(x)\)[/tex] is compressed vertically by a factor of 4 and shifted right 6 units. (Not correct regarding the vertical compression and horizontal shift.)
- Choice C: The graph of [tex]\(h(x)\)[/tex] is compressed horizontally by a factor of 4 and shifted up 6 units. (Not correct regarding the horizontal compression.)
- Choice D: The graph of [tex]\(h(x)\)[/tex] is stretched vertically by a factor of 4 and shifted right 6 units. (Not correct regarding vertical stretch and horizontal shift.)
The correct transformation matches Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
Therefore, the correct answer is A.
1. Horizontal Stretch:
- In [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex], the term [tex]\(\frac{1}{4}x\)[/tex] inside the absolute value indicates a horizontal transformation. Specifically, multiplying [tex]\(x\)[/tex] by [tex]\(\frac{1}{4}\)[/tex] stretches the graph horizontally by a factor of 4. This is because [tex]\(|x|\)[/tex] compressed horizontally would become [tex]\(|kx|\)[/tex] where [tex]\(0 < k < 1\)[/tex]; here [tex]\(k = \frac{1}{4}\)[/tex], and this represents a horizontal stretch by the reciprocal factor, which is 4.
2. Vertical Shift:
- The term [tex]\(+6\)[/tex] outside the absolute value indicates a vertical shift. Specifically, it shifts the graph up by 6 units.
Combining these transformations, we can summarize the effects on the graph of [tex]\(f(x) = |x|\)[/tex] to obtain the graph of [tex]\(h(x) = \left|\frac{1}{4}x\right| + 6\)[/tex] as follows:
- The graph is horizontally stretched by a factor of 4.
- The graph is shifted up by 6 units.
Let's match these transformations with the provided choices:
- Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
- Choice B: The graph of [tex]\(h(x)\)[/tex] is compressed vertically by a factor of 4 and shifted right 6 units. (Not correct regarding the vertical compression and horizontal shift.)
- Choice C: The graph of [tex]\(h(x)\)[/tex] is compressed horizontally by a factor of 4 and shifted up 6 units. (Not correct regarding the horizontal compression.)
- Choice D: The graph of [tex]\(h(x)\)[/tex] is stretched vertically by a factor of 4 and shifted right 6 units. (Not correct regarding vertical stretch and horizontal shift.)
The correct transformation matches Choice A: The graph of [tex]\(h(x)\)[/tex] is stretched horizontally by a factor of 4 and shifted up 6 units.
Therefore, the correct answer is A.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.