Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(-3 \cdot e^{5w} = -88\)[/tex] for [tex]\(w\)[/tex], follow these steps:
1. Isolate the exponential term:
[tex]\[ -3 \cdot e^{5w} = -88 \][/tex]
Divide both sides by [tex]\(-3\)[/tex]:
[tex]\[ e^{5w} = \frac{88}{3} \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln(e^{5w}) = \ln\left(\frac{88}{3}\right) \][/tex]
Using the property of logarithms [tex]\(\ln(e^x) = x\)[/tex], this simplifies to:
[tex]\[ 5w = \ln\left(\frac{88}{3}\right) \][/tex]
3. Solve for [tex]\(w\)[/tex]:
Divide both sides by 5:
[tex]\[ w = \frac{\ln\left(\frac{88}{3}\right)}{5} \][/tex]
Hence, the exact solution as a logarithm in base-e is:
[tex]\[ w = \frac{\ln\left(\frac{88}{3}\right)}{5} \][/tex]
To approximate the value of [tex]\(w\)[/tex], evaluate the logarithm and then divide by 5. The numerical result is approximately:
[tex]\[ w \approx 0.676 \][/tex]
Thus, the approximate value of [tex]\(w\)[/tex] rounded to the nearest thousandth is:
[tex]\[ w \approx 0.676 \][/tex]
1. Isolate the exponential term:
[tex]\[ -3 \cdot e^{5w} = -88 \][/tex]
Divide both sides by [tex]\(-3\)[/tex]:
[tex]\[ e^{5w} = \frac{88}{3} \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln(e^{5w}) = \ln\left(\frac{88}{3}\right) \][/tex]
Using the property of logarithms [tex]\(\ln(e^x) = x\)[/tex], this simplifies to:
[tex]\[ 5w = \ln\left(\frac{88}{3}\right) \][/tex]
3. Solve for [tex]\(w\)[/tex]:
Divide both sides by 5:
[tex]\[ w = \frac{\ln\left(\frac{88}{3}\right)}{5} \][/tex]
Hence, the exact solution as a logarithm in base-e is:
[tex]\[ w = \frac{\ln\left(\frac{88}{3}\right)}{5} \][/tex]
To approximate the value of [tex]\(w\)[/tex], evaluate the logarithm and then divide by 5. The numerical result is approximately:
[tex]\[ w \approx 0.676 \][/tex]
Thus, the approximate value of [tex]\(w\)[/tex] rounded to the nearest thousandth is:
[tex]\[ w \approx 0.676 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.