Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's analyze the problem step-by-step to determine if the statement [tex]\( b^{1 / n} = \sqrt{6} \)[/tex] is true under the given conditions.
Given:
1. [tex]\( b \)[/tex] is a nonnegative real number.
2. [tex]\( n \)[/tex] is a positive integer.
The problem states:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
To verify the truth value of this equation, we need to assess if there exist values of [tex]\( b \)[/tex] and [tex]\( n \)[/tex] that satisfy it. Let's explore this step by step:
1. Let [tex]\( \sqrt{6} \)[/tex] be expressed in another form:
[tex]\[ \sqrt{6} = 6^{\frac{1}{2}} \][/tex]
2. In the general form:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
For the equation to hold true, [tex]\( b \)[/tex] must be chosen such that raising it to the power of [tex]\( \frac{1}{n} \)[/tex] yields [tex]\( 6^{\frac{1}{2}} \)[/tex].
3. Comparing the exponents on both sides of the equation, we can set:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
4. By raising both sides to the power of [tex]\( n \)[/tex], we get:
[tex]\[ b = (6^{\frac{1}{2}})^n \][/tex]
5. Simplifying the right-hand side, we get:
[tex]\[ b = 6^{\frac{n}{2}} \][/tex]
We see that if we let:
[tex]\[ n = 2 \][/tex]
and,
[tex]\[ b = 6 \][/tex]
Then:
[tex]\[ 6^{\frac{1}{2}} = \sqrt{6} \][/tex]
Given these values:
- [tex]\( n = 2 \)[/tex] (a positive integer)
- [tex]\( b = 6 \)[/tex] (a nonnegative real number)
This satisfies the original assertion:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
Therefore, the statement [tex]\( b^{\frac{1}{n}} = \sqrt{6} \)[/tex] can be confirmed as true under the appropriate selection of [tex]\( b \)[/tex] and [tex]\( n \)[/tex]:
The correct answer is:
A. True
Given:
1. [tex]\( b \)[/tex] is a nonnegative real number.
2. [tex]\( n \)[/tex] is a positive integer.
The problem states:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
To verify the truth value of this equation, we need to assess if there exist values of [tex]\( b \)[/tex] and [tex]\( n \)[/tex] that satisfy it. Let's explore this step by step:
1. Let [tex]\( \sqrt{6} \)[/tex] be expressed in another form:
[tex]\[ \sqrt{6} = 6^{\frac{1}{2}} \][/tex]
2. In the general form:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
For the equation to hold true, [tex]\( b \)[/tex] must be chosen such that raising it to the power of [tex]\( \frac{1}{n} \)[/tex] yields [tex]\( 6^{\frac{1}{2}} \)[/tex].
3. Comparing the exponents on both sides of the equation, we can set:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
4. By raising both sides to the power of [tex]\( n \)[/tex], we get:
[tex]\[ b = (6^{\frac{1}{2}})^n \][/tex]
5. Simplifying the right-hand side, we get:
[tex]\[ b = 6^{\frac{n}{2}} \][/tex]
We see that if we let:
[tex]\[ n = 2 \][/tex]
and,
[tex]\[ b = 6 \][/tex]
Then:
[tex]\[ 6^{\frac{1}{2}} = \sqrt{6} \][/tex]
Given these values:
- [tex]\( n = 2 \)[/tex] (a positive integer)
- [tex]\( b = 6 \)[/tex] (a nonnegative real number)
This satisfies the original assertion:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
Therefore, the statement [tex]\( b^{\frac{1}{n}} = \sqrt{6} \)[/tex] can be confirmed as true under the appropriate selection of [tex]\( b \)[/tex] and [tex]\( n \)[/tex]:
The correct answer is:
A. True
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.