At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the problem step-by-step to determine if the statement [tex]\( b^{1 / n} = \sqrt{6} \)[/tex] is true under the given conditions.
Given:
1. [tex]\( b \)[/tex] is a nonnegative real number.
2. [tex]\( n \)[/tex] is a positive integer.
The problem states:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
To verify the truth value of this equation, we need to assess if there exist values of [tex]\( b \)[/tex] and [tex]\( n \)[/tex] that satisfy it. Let's explore this step by step:
1. Let [tex]\( \sqrt{6} \)[/tex] be expressed in another form:
[tex]\[ \sqrt{6} = 6^{\frac{1}{2}} \][/tex]
2. In the general form:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
For the equation to hold true, [tex]\( b \)[/tex] must be chosen such that raising it to the power of [tex]\( \frac{1}{n} \)[/tex] yields [tex]\( 6^{\frac{1}{2}} \)[/tex].
3. Comparing the exponents on both sides of the equation, we can set:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
4. By raising both sides to the power of [tex]\( n \)[/tex], we get:
[tex]\[ b = (6^{\frac{1}{2}})^n \][/tex]
5. Simplifying the right-hand side, we get:
[tex]\[ b = 6^{\frac{n}{2}} \][/tex]
We see that if we let:
[tex]\[ n = 2 \][/tex]
and,
[tex]\[ b = 6 \][/tex]
Then:
[tex]\[ 6^{\frac{1}{2}} = \sqrt{6} \][/tex]
Given these values:
- [tex]\( n = 2 \)[/tex] (a positive integer)
- [tex]\( b = 6 \)[/tex] (a nonnegative real number)
This satisfies the original assertion:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
Therefore, the statement [tex]\( b^{\frac{1}{n}} = \sqrt{6} \)[/tex] can be confirmed as true under the appropriate selection of [tex]\( b \)[/tex] and [tex]\( n \)[/tex]:
The correct answer is:
A. True
Given:
1. [tex]\( b \)[/tex] is a nonnegative real number.
2. [tex]\( n \)[/tex] is a positive integer.
The problem states:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
To verify the truth value of this equation, we need to assess if there exist values of [tex]\( b \)[/tex] and [tex]\( n \)[/tex] that satisfy it. Let's explore this step by step:
1. Let [tex]\( \sqrt{6} \)[/tex] be expressed in another form:
[tex]\[ \sqrt{6} = 6^{\frac{1}{2}} \][/tex]
2. In the general form:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
For the equation to hold true, [tex]\( b \)[/tex] must be chosen such that raising it to the power of [tex]\( \frac{1}{n} \)[/tex] yields [tex]\( 6^{\frac{1}{2}} \)[/tex].
3. Comparing the exponents on both sides of the equation, we can set:
[tex]\[ b^{\frac{1}{n}} = 6^{\frac{1}{2}} \][/tex]
4. By raising both sides to the power of [tex]\( n \)[/tex], we get:
[tex]\[ b = (6^{\frac{1}{2}})^n \][/tex]
5. Simplifying the right-hand side, we get:
[tex]\[ b = 6^{\frac{n}{2}} \][/tex]
We see that if we let:
[tex]\[ n = 2 \][/tex]
and,
[tex]\[ b = 6 \][/tex]
Then:
[tex]\[ 6^{\frac{1}{2}} = \sqrt{6} \][/tex]
Given these values:
- [tex]\( n = 2 \)[/tex] (a positive integer)
- [tex]\( b = 6 \)[/tex] (a nonnegative real number)
This satisfies the original assertion:
[tex]\[ b^{\frac{1}{n}} = \sqrt{6} \][/tex]
Therefore, the statement [tex]\( b^{\frac{1}{n}} = \sqrt{6} \)[/tex] can be confirmed as true under the appropriate selection of [tex]\( b \)[/tex] and [tex]\( n \)[/tex]:
The correct answer is:
A. True
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.