Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\( |x-5| + 7 = 15 \)[/tex], let's break the problem into a few manageable steps.
### Step 1: Isolate the Absolute Value Expression
First, we need to isolate the absolute value expression [tex]\( |x - 5| \)[/tex]. To do this, we'll subtract 7 from both sides of the equation:
[tex]\[ |x - 5| + 7 - 7 = 15 - 7 \][/tex]
This simplifies to:
[tex]\[ |x - 5| = 8 \][/tex]
### Step 2: Solve the Absolute Value Equation
The absolute value equation [tex]\( |x - 5| = 8 \)[/tex] means that the expression inside the absolute value can be either [tex]\( 8 \)[/tex] or [tex]\( -8 \)[/tex]. So, we set up two separate equations:
[tex]\[ x - 5 = 8 \quad \text{or} \quad x - 5 = -8 \][/tex]
#### Solving the First Equation
[tex]\[ x - 5 = 8 \][/tex]
Add 5 to both sides:
[tex]\[ x = 8 + 5 \][/tex]
[tex]\[ x = 13 \][/tex]
#### Solving the Second Equation
[tex]\[ x - 5 = -8 \][/tex]
Add 5 to both sides:
[tex]\[ x = -8 + 5 \][/tex]
[tex]\[ x = -3 \][/tex]
### Step 3: Verify the Solutions
The potential solutions are [tex]\( x = 13 \)[/tex] and [tex]\( x = -3 \)[/tex]. To ensure these are correct, we substitute them back into the original equation:
#### For [tex]\( x = 13 \)[/tex]
[tex]\[ |13 - 5| + 7 = |8| + 7 = 8 + 7 = 15 \][/tex]
This holds true.
#### For [tex]\( x = -3 \)[/tex]
[tex]\[ |-3 - 5| + 7 = |-8| + 7 = 8 + 7 = 15 \][/tex]
This also holds true.
### Step 4: Conclusion
Both solutions satisfy the original equation. Therefore, the correct answers are:
[tex]\[ x = 13 \quad \text{and} \quad x = -3 \][/tex]
Looking at the given answer choices, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
### Step 1: Isolate the Absolute Value Expression
First, we need to isolate the absolute value expression [tex]\( |x - 5| \)[/tex]. To do this, we'll subtract 7 from both sides of the equation:
[tex]\[ |x - 5| + 7 - 7 = 15 - 7 \][/tex]
This simplifies to:
[tex]\[ |x - 5| = 8 \][/tex]
### Step 2: Solve the Absolute Value Equation
The absolute value equation [tex]\( |x - 5| = 8 \)[/tex] means that the expression inside the absolute value can be either [tex]\( 8 \)[/tex] or [tex]\( -8 \)[/tex]. So, we set up two separate equations:
[tex]\[ x - 5 = 8 \quad \text{or} \quad x - 5 = -8 \][/tex]
#### Solving the First Equation
[tex]\[ x - 5 = 8 \][/tex]
Add 5 to both sides:
[tex]\[ x = 8 + 5 \][/tex]
[tex]\[ x = 13 \][/tex]
#### Solving the Second Equation
[tex]\[ x - 5 = -8 \][/tex]
Add 5 to both sides:
[tex]\[ x = -8 + 5 \][/tex]
[tex]\[ x = -3 \][/tex]
### Step 3: Verify the Solutions
The potential solutions are [tex]\( x = 13 \)[/tex] and [tex]\( x = -3 \)[/tex]. To ensure these are correct, we substitute them back into the original equation:
#### For [tex]\( x = 13 \)[/tex]
[tex]\[ |13 - 5| + 7 = |8| + 7 = 8 + 7 = 15 \][/tex]
This holds true.
#### For [tex]\( x = -3 \)[/tex]
[tex]\[ |-3 - 5| + 7 = |-8| + 7 = 8 + 7 = 15 \][/tex]
This also holds true.
### Step 4: Conclusion
Both solutions satisfy the original equation. Therefore, the correct answers are:
[tex]\[ x = 13 \quad \text{and} \quad x = -3 \][/tex]
Looking at the given answer choices, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.