Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex], we can use the properties of logarithms. Let's go through the steps carefully.
1. Understanding the Change of Base Formula:
The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \][/tex]
where [tex]\(b\)[/tex] and [tex]\(a\)[/tex] are positive real numbers and [tex]\(k\)[/tex] is any positive real number different from 1.
2. Applying the Change of Base Formula:
We can rewrite [tex]\(\log_9(m)\)[/tex] using the change of base formula. Let’s choose the common logarithm (base 10) for simplicity:
[tex]\[ \log_9(m) = \frac{\log(m)}{\log(9)} \][/tex]
3. Substitute [tex]\(\log_9(m)\)[/tex] into the Original Expression:
Now, substitute [tex]\(\log_9(m)\)[/tex] into the original expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex]:
[tex]\[ \frac{\log_9(m)}{\log(m)} = \frac{\frac{\log(m)}{\log(9)}}{\log(m)} \][/tex]
4. Simplify the Expression:
Simplify the fraction:
[tex]\[ \frac{\frac{\log(m)}{\log(9)}}{\log(m)} = \frac{\log(m)}{\log(9) \cdot \log(m)} \][/tex]
Since [tex]\(\log(m)\)[/tex] is in both the numerator and the denominator (given that [tex]\(\log(m) \neq 0\)[/tex]), we can cancel [tex]\(\log(m)\)[/tex]:
[tex]\[ \frac{1}{\log(9)} \][/tex]
Therefore, the expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex] simplifies to [tex]\(\frac{1}{\log(9)}\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{D \: \frac{1}{\log(9)}} \][/tex]
1. Understanding the Change of Base Formula:
The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \][/tex]
where [tex]\(b\)[/tex] and [tex]\(a\)[/tex] are positive real numbers and [tex]\(k\)[/tex] is any positive real number different from 1.
2. Applying the Change of Base Formula:
We can rewrite [tex]\(\log_9(m)\)[/tex] using the change of base formula. Let’s choose the common logarithm (base 10) for simplicity:
[tex]\[ \log_9(m) = \frac{\log(m)}{\log(9)} \][/tex]
3. Substitute [tex]\(\log_9(m)\)[/tex] into the Original Expression:
Now, substitute [tex]\(\log_9(m)\)[/tex] into the original expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex]:
[tex]\[ \frac{\log_9(m)}{\log(m)} = \frac{\frac{\log(m)}{\log(9)}}{\log(m)} \][/tex]
4. Simplify the Expression:
Simplify the fraction:
[tex]\[ \frac{\frac{\log(m)}{\log(9)}}{\log(m)} = \frac{\log(m)}{\log(9) \cdot \log(m)} \][/tex]
Since [tex]\(\log(m)\)[/tex] is in both the numerator and the denominator (given that [tex]\(\log(m) \neq 0\)[/tex]), we can cancel [tex]\(\log(m)\)[/tex]:
[tex]\[ \frac{1}{\log(9)} \][/tex]
Therefore, the expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex] simplifies to [tex]\(\frac{1}{\log(9)}\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{D \: \frac{1}{\log(9)}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.