Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex], we can use the properties of logarithms. Let's go through the steps carefully.
1. Understanding the Change of Base Formula:
The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \][/tex]
where [tex]\(b\)[/tex] and [tex]\(a\)[/tex] are positive real numbers and [tex]\(k\)[/tex] is any positive real number different from 1.
2. Applying the Change of Base Formula:
We can rewrite [tex]\(\log_9(m)\)[/tex] using the change of base formula. Let’s choose the common logarithm (base 10) for simplicity:
[tex]\[ \log_9(m) = \frac{\log(m)}{\log(9)} \][/tex]
3. Substitute [tex]\(\log_9(m)\)[/tex] into the Original Expression:
Now, substitute [tex]\(\log_9(m)\)[/tex] into the original expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex]:
[tex]\[ \frac{\log_9(m)}{\log(m)} = \frac{\frac{\log(m)}{\log(9)}}{\log(m)} \][/tex]
4. Simplify the Expression:
Simplify the fraction:
[tex]\[ \frac{\frac{\log(m)}{\log(9)}}{\log(m)} = \frac{\log(m)}{\log(9) \cdot \log(m)} \][/tex]
Since [tex]\(\log(m)\)[/tex] is in both the numerator and the denominator (given that [tex]\(\log(m) \neq 0\)[/tex]), we can cancel [tex]\(\log(m)\)[/tex]:
[tex]\[ \frac{1}{\log(9)} \][/tex]
Therefore, the expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex] simplifies to [tex]\(\frac{1}{\log(9)}\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{D \: \frac{1}{\log(9)}} \][/tex]
1. Understanding the Change of Base Formula:
The change of base formula for logarithms states that:
[tex]\[ \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \][/tex]
where [tex]\(b\)[/tex] and [tex]\(a\)[/tex] are positive real numbers and [tex]\(k\)[/tex] is any positive real number different from 1.
2. Applying the Change of Base Formula:
We can rewrite [tex]\(\log_9(m)\)[/tex] using the change of base formula. Let’s choose the common logarithm (base 10) for simplicity:
[tex]\[ \log_9(m) = \frac{\log(m)}{\log(9)} \][/tex]
3. Substitute [tex]\(\log_9(m)\)[/tex] into the Original Expression:
Now, substitute [tex]\(\log_9(m)\)[/tex] into the original expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex]:
[tex]\[ \frac{\log_9(m)}{\log(m)} = \frac{\frac{\log(m)}{\log(9)}}{\log(m)} \][/tex]
4. Simplify the Expression:
Simplify the fraction:
[tex]\[ \frac{\frac{\log(m)}{\log(9)}}{\log(m)} = \frac{\log(m)}{\log(9) \cdot \log(m)} \][/tex]
Since [tex]\(\log(m)\)[/tex] is in both the numerator and the denominator (given that [tex]\(\log(m) \neq 0\)[/tex]), we can cancel [tex]\(\log(m)\)[/tex]:
[tex]\[ \frac{1}{\log(9)} \][/tex]
Therefore, the expression [tex]\(\frac{\log_9(m)}{\log(m)}\)[/tex] simplifies to [tex]\(\frac{1}{\log(9)}\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{D \: \frac{1}{\log(9)}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.