Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\( |6x + 3| = 21 \)[/tex], follow these steps:
1. Understand the absolute value equation: The equation [tex]\( |6x + 3| = 21 \)[/tex] means that the expression inside the absolute value, [tex]\( 6x + 3 \)[/tex], can be either 21 or -21.
2. Set up two separate equations: This gives us two different linear equations to solve:
- [tex]\( 6x + 3 = 21 \)[/tex]
- [tex]\( 6x + 3 = -21 \)[/tex]
3. Solve the first equation [tex]\( 6x + 3 = 21 \)[/tex]:
- Subtract 3 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x + 3 - 3 = 21 - 3 \][/tex]
[tex]\[ 6x = 18 \][/tex]
- Divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{18}{6} \][/tex]
[tex]\[ x = 3 \][/tex]
4. Solve the second equation [tex]\( 6x + 3 = -21 \)[/tex]:
- Subtract 3 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x + 3 - 3 = -21 - 3 \][/tex]
[tex]\[ 6x = -24 \][/tex]
- Divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-24}{6} \][/tex]
[tex]\[ x = -4 \][/tex]
Therefore, the solutions to the equation [tex]\( |6x + 3| = 21 \)[/tex] are [tex]\( x = 3 \)[/tex] and [tex]\( x = -4 \)[/tex].
Looking at the provided choices:
- A. [tex]\( x = -3 \)[/tex] and [tex]\( x = 4 \)[/tex]
- B. [tex]\( x = -3 \)[/tex] and [tex]\( x = -4 \)[/tex]
- C. [tex]\( x = 3 \)[/tex] and [tex]\( x = -4 \)[/tex]
- D. [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]
The correct choice is:
C. [tex]\( x = 3 \)[/tex] and [tex]\( x = -4 \)[/tex].
1. Understand the absolute value equation: The equation [tex]\( |6x + 3| = 21 \)[/tex] means that the expression inside the absolute value, [tex]\( 6x + 3 \)[/tex], can be either 21 or -21.
2. Set up two separate equations: This gives us two different linear equations to solve:
- [tex]\( 6x + 3 = 21 \)[/tex]
- [tex]\( 6x + 3 = -21 \)[/tex]
3. Solve the first equation [tex]\( 6x + 3 = 21 \)[/tex]:
- Subtract 3 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x + 3 - 3 = 21 - 3 \][/tex]
[tex]\[ 6x = 18 \][/tex]
- Divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{18}{6} \][/tex]
[tex]\[ x = 3 \][/tex]
4. Solve the second equation [tex]\( 6x + 3 = -21 \)[/tex]:
- Subtract 3 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x + 3 - 3 = -21 - 3 \][/tex]
[tex]\[ 6x = -24 \][/tex]
- Divide both sides by 6 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-24}{6} \][/tex]
[tex]\[ x = -4 \][/tex]
Therefore, the solutions to the equation [tex]\( |6x + 3| = 21 \)[/tex] are [tex]\( x = 3 \)[/tex] and [tex]\( x = -4 \)[/tex].
Looking at the provided choices:
- A. [tex]\( x = -3 \)[/tex] and [tex]\( x = 4 \)[/tex]
- B. [tex]\( x = -3 \)[/tex] and [tex]\( x = -4 \)[/tex]
- C. [tex]\( x = 3 \)[/tex] and [tex]\( x = -4 \)[/tex]
- D. [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]
The correct choice is:
C. [tex]\( x = 3 \)[/tex] and [tex]\( x = -4 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.