Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve the equation [tex]\(4|x+5| + 8 = 24\)[/tex] step by step.
1. Isolate the Absolute Value:
First, we need to isolate the absolute value term [tex]\(4|x+5|\)[/tex]. To do so, we subtract 8 from both sides of the equation:
[tex]\[ 4|x+5| + 8 - 8 = 24 - 8 \][/tex]
Simplifying this, we get:
[tex]\[ 4|x+5| = 16 \][/tex]
2. Solve for the Absolute Value:
Next, divide both sides by 4 to isolate the absolute value term:
[tex]\[ \frac{4|x+5|}{4} = \frac{16}{4} \][/tex]
Simplifying this, we have:
[tex]\[ |x+5| = 4 \][/tex]
3. Solve the Absolute Value Equation:
The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\( x+5 \)[/tex] can be either 4 or -4. Therefore, we have two separate equations to solve:
[tex]\[ x + 5 = 4 \quad \text{and} \quad x + 5 = -4 \][/tex]
4. Solve Each Equation:
- For the equation [tex]\(x + 5 = 4\)[/tex]:
[tex]\[ x + 5 - 5 = 4 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ x = -1 \][/tex]
- For the equation [tex]\(x + 5 = -4\)[/tex]:
[tex]\[ x + 5 - 5 = -4 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ x = -9 \][/tex]
5. Identify the Solutions:
Therefore, the solutions to the original equation are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].
6. Match with Given Choices:
Comparing these solutions with the given choices:
[tex]\[ D. \quad x = -1 \quad \text{and} \quad x = -9 \][/tex]
So, the correct option is
[tex]\[ \boxed{D} \][/tex]
1. Isolate the Absolute Value:
First, we need to isolate the absolute value term [tex]\(4|x+5|\)[/tex]. To do so, we subtract 8 from both sides of the equation:
[tex]\[ 4|x+5| + 8 - 8 = 24 - 8 \][/tex]
Simplifying this, we get:
[tex]\[ 4|x+5| = 16 \][/tex]
2. Solve for the Absolute Value:
Next, divide both sides by 4 to isolate the absolute value term:
[tex]\[ \frac{4|x+5|}{4} = \frac{16}{4} \][/tex]
Simplifying this, we have:
[tex]\[ |x+5| = 4 \][/tex]
3. Solve the Absolute Value Equation:
The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\( x+5 \)[/tex] can be either 4 or -4. Therefore, we have two separate equations to solve:
[tex]\[ x + 5 = 4 \quad \text{and} \quad x + 5 = -4 \][/tex]
4. Solve Each Equation:
- For the equation [tex]\(x + 5 = 4\)[/tex]:
[tex]\[ x + 5 - 5 = 4 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ x = -1 \][/tex]
- For the equation [tex]\(x + 5 = -4\)[/tex]:
[tex]\[ x + 5 - 5 = -4 - 5 \][/tex]
Simplifying this, we get:
[tex]\[ x = -9 \][/tex]
5. Identify the Solutions:
Therefore, the solutions to the original equation are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].
6. Match with Given Choices:
Comparing these solutions with the given choices:
[tex]\[ D. \quad x = -1 \quad \text{and} \quad x = -9 \][/tex]
So, the correct option is
[tex]\[ \boxed{D} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.