Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\( |x+4| - 5 = 6 \)[/tex], we can follow these steps:
1. Isolate the absolute value:
[tex]\[ |x+4| - 5 = 6 \][/tex]
Add 5 to both sides of the equation to isolate the absolute value:
[tex]\[ |x+4| = 11 \][/tex]
2. Split into two cases:
The equation [tex]\( |x+4| = 11 \)[/tex] gives us two separate cases: one in which the expression inside the absolute value is positive, and one in which it is negative.
- Case 1: [tex]\( x + 4 = 11 \)[/tex]
- Case 2: [tex]\( -(x + 4) = 11 \)[/tex]
3. Solve each case:
- Case 1:
[tex]\[ x + 4 = 11 \][/tex]
Subtract 4 from both sides:
[tex]\[ x = 7 \][/tex]
- Case 2:
[tex]\[ -(x + 4) = 11 \][/tex]
Distribute the negative sign:
[tex]\[ -x - 4 = 11 \][/tex]
Add 4 to both sides:
[tex]\[ -x = 15 \][/tex]
Multiply both sides by -1:
[tex]\[ x = -15 \][/tex]
4. Combine the solutions:
The solutions to the equation [tex]\( |x+4| - 5 = 6 \)[/tex] are:
[tex]\[ x = 7 \text{ and } x = -15 \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 7 \)[/tex] and [tex]\( x = -15 \)[/tex]
1. Isolate the absolute value:
[tex]\[ |x+4| - 5 = 6 \][/tex]
Add 5 to both sides of the equation to isolate the absolute value:
[tex]\[ |x+4| = 11 \][/tex]
2. Split into two cases:
The equation [tex]\( |x+4| = 11 \)[/tex] gives us two separate cases: one in which the expression inside the absolute value is positive, and one in which it is negative.
- Case 1: [tex]\( x + 4 = 11 \)[/tex]
- Case 2: [tex]\( -(x + 4) = 11 \)[/tex]
3. Solve each case:
- Case 1:
[tex]\[ x + 4 = 11 \][/tex]
Subtract 4 from both sides:
[tex]\[ x = 7 \][/tex]
- Case 2:
[tex]\[ -(x + 4) = 11 \][/tex]
Distribute the negative sign:
[tex]\[ -x - 4 = 11 \][/tex]
Add 4 to both sides:
[tex]\[ -x = 15 \][/tex]
Multiply both sides by -1:
[tex]\[ x = -15 \][/tex]
4. Combine the solutions:
The solutions to the equation [tex]\( |x+4| - 5 = 6 \)[/tex] are:
[tex]\[ x = 7 \text{ and } x = -15 \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 7 \)[/tex] and [tex]\( x = -15 \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.