Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\( |x+4| - 5 = 6 \)[/tex], we can follow these steps:
1. Isolate the absolute value:
[tex]\[ |x+4| - 5 = 6 \][/tex]
Add 5 to both sides of the equation to isolate the absolute value:
[tex]\[ |x+4| = 11 \][/tex]
2. Split into two cases:
The equation [tex]\( |x+4| = 11 \)[/tex] gives us two separate cases: one in which the expression inside the absolute value is positive, and one in which it is negative.
- Case 1: [tex]\( x + 4 = 11 \)[/tex]
- Case 2: [tex]\( -(x + 4) = 11 \)[/tex]
3. Solve each case:
- Case 1:
[tex]\[ x + 4 = 11 \][/tex]
Subtract 4 from both sides:
[tex]\[ x = 7 \][/tex]
- Case 2:
[tex]\[ -(x + 4) = 11 \][/tex]
Distribute the negative sign:
[tex]\[ -x - 4 = 11 \][/tex]
Add 4 to both sides:
[tex]\[ -x = 15 \][/tex]
Multiply both sides by -1:
[tex]\[ x = -15 \][/tex]
4. Combine the solutions:
The solutions to the equation [tex]\( |x+4| - 5 = 6 \)[/tex] are:
[tex]\[ x = 7 \text{ and } x = -15 \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 7 \)[/tex] and [tex]\( x = -15 \)[/tex]
1. Isolate the absolute value:
[tex]\[ |x+4| - 5 = 6 \][/tex]
Add 5 to both sides of the equation to isolate the absolute value:
[tex]\[ |x+4| = 11 \][/tex]
2. Split into two cases:
The equation [tex]\( |x+4| = 11 \)[/tex] gives us two separate cases: one in which the expression inside the absolute value is positive, and one in which it is negative.
- Case 1: [tex]\( x + 4 = 11 \)[/tex]
- Case 2: [tex]\( -(x + 4) = 11 \)[/tex]
3. Solve each case:
- Case 1:
[tex]\[ x + 4 = 11 \][/tex]
Subtract 4 from both sides:
[tex]\[ x = 7 \][/tex]
- Case 2:
[tex]\[ -(x + 4) = 11 \][/tex]
Distribute the negative sign:
[tex]\[ -x - 4 = 11 \][/tex]
Add 4 to both sides:
[tex]\[ -x = 15 \][/tex]
Multiply both sides by -1:
[tex]\[ x = -15 \][/tex]
4. Combine the solutions:
The solutions to the equation [tex]\( |x+4| - 5 = 6 \)[/tex] are:
[tex]\[ x = 7 \text{ and } x = -15 \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 7 \)[/tex] and [tex]\( x = -15 \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.