Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Solve [tex]|x+4|-5=6[/tex].

A. [tex]x=-7[/tex] and [tex]x=15[/tex]
B. [tex]x=7[/tex] and [tex]x=-15[/tex]
C. [tex]x=7[/tex] and [tex]x=-7[/tex]
D. [tex]x=-7[/tex] and [tex]x=-15[/tex]


Sagot :

To solve the equation [tex]\( |x+4| - 5 = 6 \)[/tex], we can follow these steps:

1. Isolate the absolute value:
[tex]\[ |x+4| - 5 = 6 \][/tex]
Add 5 to both sides of the equation to isolate the absolute value:
[tex]\[ |x+4| = 11 \][/tex]

2. Split into two cases:
The equation [tex]\( |x+4| = 11 \)[/tex] gives us two separate cases: one in which the expression inside the absolute value is positive, and one in which it is negative.

- Case 1: [tex]\( x + 4 = 11 \)[/tex]
- Case 2: [tex]\( -(x + 4) = 11 \)[/tex]

3. Solve each case:

- Case 1:
[tex]\[ x + 4 = 11 \][/tex]
Subtract 4 from both sides:
[tex]\[ x = 7 \][/tex]

- Case 2:
[tex]\[ -(x + 4) = 11 \][/tex]
Distribute the negative sign:
[tex]\[ -x - 4 = 11 \][/tex]
Add 4 to both sides:
[tex]\[ -x = 15 \][/tex]
Multiply both sides by -1:
[tex]\[ x = -15 \][/tex]

4. Combine the solutions:

The solutions to the equation [tex]\( |x+4| - 5 = 6 \)[/tex] are:
[tex]\[ x = 7 \text{ and } x = -15 \][/tex]

Therefore, the correct answer is:
B. [tex]\( x = 7 \)[/tex] and [tex]\( x = -15 \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.