Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the correct expression for the variation of the concentration of a reactant as a function of time, we need to understand the order of the reaction and the integrated rate laws for different orders of reactions.
For a reaction involving a single reactant [tex]\( A \)[/tex] breaking down, the rate laws are different depending on whether the reaction is first-order, second-order, etc.
1. Zero-order reactions have a rate that is constant and independent of the concentration of [tex]\( A \)[/tex].
Integrated rate law:
[tex]\[ [A]_t = [A]_0 - k \cdot t \][/tex]
Here, [tex]\( k \)[/tex] is the rate constant, [tex]\( [A]_t \)[/tex] is the concentration of [tex]\( A \)[/tex] at time [tex]\( t \)[/tex], and [tex]\( [A]_0 \)[/tex] is the initial concentration of [tex]\( A \)[/tex].
2. First-order reactions have a rate that is directly proportional to the concentration of [tex]\( A \)[/tex].
Integrated rate law:
[tex]\[ \ln([A]_t) = \ln([A]_0) - k \cdot t \quad \text{or} \quad \ln([A]_t/[A]_0) = - k \cdot t \][/tex]
Rearranged form:
[tex]\[ \ln([A]_t) - \ln([A]_0) = - k \cdot t \][/tex]
3. Second-order reactions have a rate proportional to the square of the concentration of [tex]\( A \)[/tex].
Integrated rate law:
[tex]\[ \frac{1}{[A]_t} = \frac{1}{[A]_0} + k \cdot t \][/tex]
Given the choices:
A) [tex]\(\frac{[A]_0}{[A]_t} = k \cdot t\)[/tex]
B) [tex]\(\ln[A]_t - \ln[A]_0 = k \cdot t\)[/tex]
C) [tex]\(\frac{1}{[A]_t} = \frac{1}{[A]_0} + k \cdot t\)[/tex]
D) [tex]\(\frac{1}{[A]_0} - \frac{1}{[A]_t} = k \cdot t\)[/tex]
E) None of these answers
From the analysis:
- Choice (A) does not correspond to the integrated rate law of a zero, first, or second-order reaction.
- Choice (B) should be modified to [tex]\(\ln[A]_t - \ln[A]_0 = - k \cdot t\)[/tex] for a first-order reaction.
- Choice (C) matches exactly with the integrated rate law for a second-order reaction.
- Choice (D) does not correspond to any standard order reaction integrated rate law.
Thus, the expression that correctly represents the variation of concentration as a function of time is:
[tex]\[ \boxed{C} \][/tex]
For a reaction involving a single reactant [tex]\( A \)[/tex] breaking down, the rate laws are different depending on whether the reaction is first-order, second-order, etc.
1. Zero-order reactions have a rate that is constant and independent of the concentration of [tex]\( A \)[/tex].
Integrated rate law:
[tex]\[ [A]_t = [A]_0 - k \cdot t \][/tex]
Here, [tex]\( k \)[/tex] is the rate constant, [tex]\( [A]_t \)[/tex] is the concentration of [tex]\( A \)[/tex] at time [tex]\( t \)[/tex], and [tex]\( [A]_0 \)[/tex] is the initial concentration of [tex]\( A \)[/tex].
2. First-order reactions have a rate that is directly proportional to the concentration of [tex]\( A \)[/tex].
Integrated rate law:
[tex]\[ \ln([A]_t) = \ln([A]_0) - k \cdot t \quad \text{or} \quad \ln([A]_t/[A]_0) = - k \cdot t \][/tex]
Rearranged form:
[tex]\[ \ln([A]_t) - \ln([A]_0) = - k \cdot t \][/tex]
3. Second-order reactions have a rate proportional to the square of the concentration of [tex]\( A \)[/tex].
Integrated rate law:
[tex]\[ \frac{1}{[A]_t} = \frac{1}{[A]_0} + k \cdot t \][/tex]
Given the choices:
A) [tex]\(\frac{[A]_0}{[A]_t} = k \cdot t\)[/tex]
B) [tex]\(\ln[A]_t - \ln[A]_0 = k \cdot t\)[/tex]
C) [tex]\(\frac{1}{[A]_t} = \frac{1}{[A]_0} + k \cdot t\)[/tex]
D) [tex]\(\frac{1}{[A]_0} - \frac{1}{[A]_t} = k \cdot t\)[/tex]
E) None of these answers
From the analysis:
- Choice (A) does not correspond to the integrated rate law of a zero, first, or second-order reaction.
- Choice (B) should be modified to [tex]\(\ln[A]_t - \ln[A]_0 = - k \cdot t\)[/tex] for a first-order reaction.
- Choice (C) matches exactly with the integrated rate law for a second-order reaction.
- Choice (D) does not correspond to any standard order reaction integrated rate law.
Thus, the expression that correctly represents the variation of concentration as a function of time is:
[tex]\[ \boxed{C} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.