Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which function has a constant additive rate of change of -14, we need to analyze the changes in the [tex]\( y \)[/tex]-values with respect to the changes in the [tex]\( x \)[/tex]-values for the provided data tables. A constant rate of change means that the difference between consecutive [tex]\( y \)[/tex]-values divided by the difference between consecutive [tex]\( x \)[/tex]-values remains the same.
Let's analyze each dataset step-by-step.
Dataset 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. From [tex]\( x = 20 \)[/tex] to [tex]\( x = 21 \)[/tex]:
[tex]\[ \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. From [tex]\( x = 21 \)[/tex] to [tex]\( x = 22 \)[/tex]:
[tex]\[ \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. From [tex]\( x = 22 \)[/tex] to [tex]\( x = 23 \)[/tex]:
[tex]\[ \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change in Dataset 1 is consistently [tex]\(-0.5\)[/tex]. This is not equal to [tex]\(-14\)[/tex].
Dataset 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. From [tex]\( x = -12 \)[/tex] to [tex]\( x = -11 \)[/tex]:
[tex]\[ \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. From [tex]\( x = -11 \)[/tex] to [tex]\( x = -10 \)[/tex]:
[tex]\[ \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. From [tex]\( x = -10 \)[/tex] to [tex]\( x = -9 \)[/tex]:
[tex]\[ \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in Dataset 2 is [tex]\( [4.0, 3.0, 3.0] \)[/tex]. We see that the rate of change is not consistent and certainly not [tex]\(-14\)[/tex].
Conclusion:
Based on the analysis, neither dataset has a constant additive rate of change of [tex]\(-14\)[/tex]. Dataset 1 has a consistent rate of change of [tex]\(-0.5\)[/tex], and Dataset 2 does not have a consistent rate of change at all (4.0, 3.0, 3.0). Therefore, none of the given functions have a constant additive rate of change of [tex]\(-14\)[/tex].
Let's analyze each dataset step-by-step.
Dataset 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 20 & -1 \\ \hline 21 & -1.5 \\ \hline 22 & -2 \\ \hline 23 & -2.5 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. From [tex]\( x = 20 \)[/tex] to [tex]\( x = 21 \)[/tex]:
[tex]\[ \frac{-1.5 - (-1)}{21 - 20} = \frac{-1.5 + 1}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
2. From [tex]\( x = 21 \)[/tex] to [tex]\( x = 22 \)[/tex]:
[tex]\[ \frac{-2 - (-1.5)}{22 - 21} = \frac{-2 + 1.5}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
3. From [tex]\( x = 22 \)[/tex] to [tex]\( x = 23 \)[/tex]:
[tex]\[ \frac{-2.5 - (-2)}{23 - 22} = \frac{-2.5 + 2}{1} = \frac{-0.5}{1} = -0.5 \][/tex]
The rate of change in Dataset 1 is consistently [tex]\(-0.5\)[/tex]. This is not equal to [tex]\(-14\)[/tex].
Dataset 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -12 & 7 \\ \hline -11 & 11 \\ \hline -10 & 14 \\ \hline -9 & 17 \\ \hline \end{array} \][/tex]
We calculate the rate of change between consecutive points:
1. From [tex]\( x = -12 \)[/tex] to [tex]\( x = -11 \)[/tex]:
[tex]\[ \frac{11 - 7}{-11 - (-12)} = \frac{11 - 7}{-11 + 12} = \frac{4}{1} = 4 \][/tex]
2. From [tex]\( x = -11 \)[/tex] to [tex]\( x = -10 \)[/tex]:
[tex]\[ \frac{14 - 11}{-10 - (-11)} = \frac{14 - 11}{-10 + 11} = \frac{3}{1} = 3 \][/tex]
3. From [tex]\( x = -10 \)[/tex] to [tex]\( x = -9 \)[/tex]:
[tex]\[ \frac{17 - 14}{-9 - (-10)} = \frac{17 - 14}{-9 + 10} = \frac{3}{1} = 3 \][/tex]
The rate of change in Dataset 2 is [tex]\( [4.0, 3.0, 3.0] \)[/tex]. We see that the rate of change is not consistent and certainly not [tex]\(-14\)[/tex].
Conclusion:
Based on the analysis, neither dataset has a constant additive rate of change of [tex]\(-14\)[/tex]. Dataset 1 has a consistent rate of change of [tex]\(-0.5\)[/tex], and Dataset 2 does not have a consistent rate of change at all (4.0, 3.0, 3.0). Therefore, none of the given functions have a constant additive rate of change of [tex]\(-14\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.