At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's find the sets [tex]\( C \cup D \)[/tex] and [tex]\( C \cap D \)[/tex] step-by-step:
1. Union of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cup D) \)[/tex]:
- The union of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes all elements that are in either [tex]\( C \)[/tex], in [tex]\( D \)[/tex], or in both.
- Set [tex]\( C \)[/tex] is [tex]\(\{0, 1, 2\}\)[/tex]
- Set [tex]\( D \)[/tex] is [tex]\(\{2, 4, 6\}\)[/tex]
- Combining all elements from both sets without any duplicates, we get:
[tex]\[ C \cup D = \{0, 1, 2, 4, 6\} \][/tex]
2. Intersection of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cap D) \)[/tex]:
- The intersection of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes only the elements that are common to both sets.
- Looking for common elements in [tex]\( C \)[/tex] and [tex]\( D \)[/tex]:
- In [tex]\( C = \{0, 1, 2\}\)[/tex]
- In [tex]\( D = \{2, 4, 6\}\)[/tex]
- The only element common to both [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 2 \)[/tex].
- Therefore, the intersection is:
[tex]\[ C \cap D = \{2\} \][/tex]
Thus, the sets [tex]\( C \cup D \)[/tex] and [tex]\( C \cap D \)[/tex] are:
- [tex]\( C \cup D = \{0, 1, 2, 4, 6\} \)[/tex]
- [tex]\( C \cap D = \{2\} \)[/tex]
These are the union and intersection of the sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex].
1. Union of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cup D) \)[/tex]:
- The union of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes all elements that are in either [tex]\( C \)[/tex], in [tex]\( D \)[/tex], or in both.
- Set [tex]\( C \)[/tex] is [tex]\(\{0, 1, 2\}\)[/tex]
- Set [tex]\( D \)[/tex] is [tex]\(\{2, 4, 6\}\)[/tex]
- Combining all elements from both sets without any duplicates, we get:
[tex]\[ C \cup D = \{0, 1, 2, 4, 6\} \][/tex]
2. Intersection of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cap D) \)[/tex]:
- The intersection of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes only the elements that are common to both sets.
- Looking for common elements in [tex]\( C \)[/tex] and [tex]\( D \)[/tex]:
- In [tex]\( C = \{0, 1, 2\}\)[/tex]
- In [tex]\( D = \{2, 4, 6\}\)[/tex]
- The only element common to both [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 2 \)[/tex].
- Therefore, the intersection is:
[tex]\[ C \cap D = \{2\} \][/tex]
Thus, the sets [tex]\( C \cup D \)[/tex] and [tex]\( C \cap D \)[/tex] are:
- [tex]\( C \cup D = \{0, 1, 2, 4, 6\} \)[/tex]
- [tex]\( C \cap D = \{2\} \)[/tex]
These are the union and intersection of the sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.