Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's find the sets [tex]\( C \cup D \)[/tex] and [tex]\( C \cap D \)[/tex] step-by-step:
1. Union of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cup D) \)[/tex]:
- The union of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes all elements that are in either [tex]\( C \)[/tex], in [tex]\( D \)[/tex], or in both.
- Set [tex]\( C \)[/tex] is [tex]\(\{0, 1, 2\}\)[/tex]
- Set [tex]\( D \)[/tex] is [tex]\(\{2, 4, 6\}\)[/tex]
- Combining all elements from both sets without any duplicates, we get:
[tex]\[ C \cup D = \{0, 1, 2, 4, 6\} \][/tex]
2. Intersection of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cap D) \)[/tex]:
- The intersection of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes only the elements that are common to both sets.
- Looking for common elements in [tex]\( C \)[/tex] and [tex]\( D \)[/tex]:
- In [tex]\( C = \{0, 1, 2\}\)[/tex]
- In [tex]\( D = \{2, 4, 6\}\)[/tex]
- The only element common to both [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 2 \)[/tex].
- Therefore, the intersection is:
[tex]\[ C \cap D = \{2\} \][/tex]
Thus, the sets [tex]\( C \cup D \)[/tex] and [tex]\( C \cap D \)[/tex] are:
- [tex]\( C \cup D = \{0, 1, 2, 4, 6\} \)[/tex]
- [tex]\( C \cap D = \{2\} \)[/tex]
These are the union and intersection of the sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex].
1. Union of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cup D) \)[/tex]:
- The union of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes all elements that are in either [tex]\( C \)[/tex], in [tex]\( D \)[/tex], or in both.
- Set [tex]\( C \)[/tex] is [tex]\(\{0, 1, 2\}\)[/tex]
- Set [tex]\( D \)[/tex] is [tex]\(\{2, 4, 6\}\)[/tex]
- Combining all elements from both sets without any duplicates, we get:
[tex]\[ C \cup D = \{0, 1, 2, 4, 6\} \][/tex]
2. Intersection of Sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] [tex]\( (C \cap D) \)[/tex]:
- The intersection of two sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex] includes only the elements that are common to both sets.
- Looking for common elements in [tex]\( C \)[/tex] and [tex]\( D \)[/tex]:
- In [tex]\( C = \{0, 1, 2\}\)[/tex]
- In [tex]\( D = \{2, 4, 6\}\)[/tex]
- The only element common to both [tex]\( C \)[/tex] and [tex]\( D \)[/tex] is [tex]\( 2 \)[/tex].
- Therefore, the intersection is:
[tex]\[ C \cap D = \{2\} \][/tex]
Thus, the sets [tex]\( C \cup D \)[/tex] and [tex]\( C \cap D \)[/tex] are:
- [tex]\( C \cup D = \{0, 1, 2, 4, 6\} \)[/tex]
- [tex]\( C \cap D = \{2\} \)[/tex]
These are the union and intersection of the sets [tex]\( C \)[/tex] and [tex]\( D \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.