Answered

At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

(ii) The equilibrium constant, [tex]K_p[/tex], is given by the following expression:
[tex]\[ K_{p} = \frac{p_{O_2}}{p_{Cl_2}^2} \][/tex]

At [tex]\(1.00 \times 10^5 \, \text{Pa}\)[/tex] and [tex]\(500 \, \text{K}\)[/tex], 70% of the initial amount of [tex]\( \text{Cl}_2(g) \)[/tex] has reacted.

Calculate [tex]K_p[/tex] and state its units.


Sagot :

Absolutely, let's walk through the solution step by step.

### Given Data:
1. Total pressure ([tex]\(P_{total}\)[/tex]): [tex]\(1.00 \times 10^5 \, \text{Pa}\)[/tex]
2. Temperature ([tex]\(T\)[/tex]): [tex]\(500 \, \text{K}\)[/tex]
3. Initial fraction of [tex]\(Cl_2(g)\)[/tex]: [tex]\(1.0\)[/tex]
4. Fraction of [tex]\(Cl_2(g)\)[/tex] that has reacted: [tex]\(70\%\)[/tex] or [tex]\(0.70\)[/tex]

### Step-by-Step Solution:

1. Calculate the initial pressure of [tex]\(Cl_2\)[/tex] (Initial [tex]\(P_{Cl_2}\)[/tex]):
Since [tex]\(Cl_2\)[/tex] initially represents 100% of the total pressure:
[tex]\[ P_{Cl_2 \, \text{initial}} = P_{total} \times \text{Initial fraction of } Cl_2 \][/tex]
[tex]\[ P_{Cl_2 \, \text{initial}} = 1.00 \times 10^5 \, \text{Pa} \times 1.0 = 100000 \, \text{Pa} \][/tex]

2. Calculate the pressure of [tex]\(Cl_2\)[/tex] that has reacted (Reacted [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{reacted}} = P_{Cl_2 \, \text{initial}} \times \text{Fraction reacted} \][/tex]
[tex]\[ P_{Cl_2 \, \text{reacted}} = 100000 \, \text{Pa} \times 0.70 = 70000 \, \text{Pa} \][/tex]

3. Calculate the remaining pressure of [tex]\(Cl_2\)[/tex] (Remaining [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{remaining}} = P_{Cl_2 \, \text{initial}} - P_{Cl_2 \, \text{reacted}} \][/tex]
[tex]\[ P_{Cl_2 \, \text{remaining}} = 100000 \, \text{Pa} - 70000 \, \text{Pa} = 30000 \, \text{Pa} \][/tex]

4. Calculate the pressure of [tex]\(O_2\)[/tex] produced (Produced [tex]\(P_{O_2}\)[/tex]):
For every 2 moles of [tex]\(Cl_2\)[/tex] reacted, 1 mole [tex]\(O_2\)[/tex] is produced. Thus, the pressure of [tex]\(O_2\)[/tex] produced is half the reacted [tex]\(Cl_2\)[/tex] pressure:
[tex]\[ P_{O_2 \, \text{produced}} = \frac{P_{Cl_2 \, \text{reacted}}}{2} \][/tex]
[tex]\[ P_{O_2 \, \text{produced}} = \frac{70000 \, \text{Pa}}{2} = 35000 \, \text{Pa} \][/tex]

5. Calculate the equilibrium constant [tex]\(K_p\)[/tex]:
[tex]\[ K_p = \frac{P_{O_2 \, \text{produced}}}{P_{Cl_2 \, \text{remaining}}^2} \][/tex]
Substituting the values:
[tex]\[ K_p = \frac{35000 \, \text{Pa}}{(30000 \, \text{Pa})^2} \][/tex]
[tex]\[ K_p = \frac{35000}{900000000} \, \text{Pa}^{-1} = 3.888888888888889 \times 10^{-5} \, \text{Pa}^{-1} \][/tex]

6. State the units of [tex]\(K_p\)[/tex]:
Given the formula [tex]\(K_p = \frac{P_{O_2}}{P_{Cl_2}^2}\)[/tex], the units will be:
[tex]\[ \text{Units of } K_p = \text{units of } \frac{\text{Pa}}{\text{Pa}^2} = \text{Pa}^{-1} \][/tex]

### Conclusion:
The equilibrium constant [tex]\(K_p\)[/tex] is [tex]\(3.888888888888889 \times 10^{-5}\)[/tex] and the units are [tex]\(\text{Pa}^{-1}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.