At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Absolutely, let's walk through the solution step by step.
### Given Data:
1. Total pressure ([tex]\(P_{total}\)[/tex]): [tex]\(1.00 \times 10^5 \, \text{Pa}\)[/tex]
2. Temperature ([tex]\(T\)[/tex]): [tex]\(500 \, \text{K}\)[/tex]
3. Initial fraction of [tex]\(Cl_2(g)\)[/tex]: [tex]\(1.0\)[/tex]
4. Fraction of [tex]\(Cl_2(g)\)[/tex] that has reacted: [tex]\(70\%\)[/tex] or [tex]\(0.70\)[/tex]
### Step-by-Step Solution:
1. Calculate the initial pressure of [tex]\(Cl_2\)[/tex] (Initial [tex]\(P_{Cl_2}\)[/tex]):
Since [tex]\(Cl_2\)[/tex] initially represents 100% of the total pressure:
[tex]\[ P_{Cl_2 \, \text{initial}} = P_{total} \times \text{Initial fraction of } Cl_2 \][/tex]
[tex]\[ P_{Cl_2 \, \text{initial}} = 1.00 \times 10^5 \, \text{Pa} \times 1.0 = 100000 \, \text{Pa} \][/tex]
2. Calculate the pressure of [tex]\(Cl_2\)[/tex] that has reacted (Reacted [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{reacted}} = P_{Cl_2 \, \text{initial}} \times \text{Fraction reacted} \][/tex]
[tex]\[ P_{Cl_2 \, \text{reacted}} = 100000 \, \text{Pa} \times 0.70 = 70000 \, \text{Pa} \][/tex]
3. Calculate the remaining pressure of [tex]\(Cl_2\)[/tex] (Remaining [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{remaining}} = P_{Cl_2 \, \text{initial}} - P_{Cl_2 \, \text{reacted}} \][/tex]
[tex]\[ P_{Cl_2 \, \text{remaining}} = 100000 \, \text{Pa} - 70000 \, \text{Pa} = 30000 \, \text{Pa} \][/tex]
4. Calculate the pressure of [tex]\(O_2\)[/tex] produced (Produced [tex]\(P_{O_2}\)[/tex]):
For every 2 moles of [tex]\(Cl_2\)[/tex] reacted, 1 mole [tex]\(O_2\)[/tex] is produced. Thus, the pressure of [tex]\(O_2\)[/tex] produced is half the reacted [tex]\(Cl_2\)[/tex] pressure:
[tex]\[ P_{O_2 \, \text{produced}} = \frac{P_{Cl_2 \, \text{reacted}}}{2} \][/tex]
[tex]\[ P_{O_2 \, \text{produced}} = \frac{70000 \, \text{Pa}}{2} = 35000 \, \text{Pa} \][/tex]
5. Calculate the equilibrium constant [tex]\(K_p\)[/tex]:
[tex]\[ K_p = \frac{P_{O_2 \, \text{produced}}}{P_{Cl_2 \, \text{remaining}}^2} \][/tex]
Substituting the values:
[tex]\[ K_p = \frac{35000 \, \text{Pa}}{(30000 \, \text{Pa})^2} \][/tex]
[tex]\[ K_p = \frac{35000}{900000000} \, \text{Pa}^{-1} = 3.888888888888889 \times 10^{-5} \, \text{Pa}^{-1} \][/tex]
6. State the units of [tex]\(K_p\)[/tex]:
Given the formula [tex]\(K_p = \frac{P_{O_2}}{P_{Cl_2}^2}\)[/tex], the units will be:
[tex]\[ \text{Units of } K_p = \text{units of } \frac{\text{Pa}}{\text{Pa}^2} = \text{Pa}^{-1} \][/tex]
### Conclusion:
The equilibrium constant [tex]\(K_p\)[/tex] is [tex]\(3.888888888888889 \times 10^{-5}\)[/tex] and the units are [tex]\(\text{Pa}^{-1}\)[/tex].
### Given Data:
1. Total pressure ([tex]\(P_{total}\)[/tex]): [tex]\(1.00 \times 10^5 \, \text{Pa}\)[/tex]
2. Temperature ([tex]\(T\)[/tex]): [tex]\(500 \, \text{K}\)[/tex]
3. Initial fraction of [tex]\(Cl_2(g)\)[/tex]: [tex]\(1.0\)[/tex]
4. Fraction of [tex]\(Cl_2(g)\)[/tex] that has reacted: [tex]\(70\%\)[/tex] or [tex]\(0.70\)[/tex]
### Step-by-Step Solution:
1. Calculate the initial pressure of [tex]\(Cl_2\)[/tex] (Initial [tex]\(P_{Cl_2}\)[/tex]):
Since [tex]\(Cl_2\)[/tex] initially represents 100% of the total pressure:
[tex]\[ P_{Cl_2 \, \text{initial}} = P_{total} \times \text{Initial fraction of } Cl_2 \][/tex]
[tex]\[ P_{Cl_2 \, \text{initial}} = 1.00 \times 10^5 \, \text{Pa} \times 1.0 = 100000 \, \text{Pa} \][/tex]
2. Calculate the pressure of [tex]\(Cl_2\)[/tex] that has reacted (Reacted [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{reacted}} = P_{Cl_2 \, \text{initial}} \times \text{Fraction reacted} \][/tex]
[tex]\[ P_{Cl_2 \, \text{reacted}} = 100000 \, \text{Pa} \times 0.70 = 70000 \, \text{Pa} \][/tex]
3. Calculate the remaining pressure of [tex]\(Cl_2\)[/tex] (Remaining [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{remaining}} = P_{Cl_2 \, \text{initial}} - P_{Cl_2 \, \text{reacted}} \][/tex]
[tex]\[ P_{Cl_2 \, \text{remaining}} = 100000 \, \text{Pa} - 70000 \, \text{Pa} = 30000 \, \text{Pa} \][/tex]
4. Calculate the pressure of [tex]\(O_2\)[/tex] produced (Produced [tex]\(P_{O_2}\)[/tex]):
For every 2 moles of [tex]\(Cl_2\)[/tex] reacted, 1 mole [tex]\(O_2\)[/tex] is produced. Thus, the pressure of [tex]\(O_2\)[/tex] produced is half the reacted [tex]\(Cl_2\)[/tex] pressure:
[tex]\[ P_{O_2 \, \text{produced}} = \frac{P_{Cl_2 \, \text{reacted}}}{2} \][/tex]
[tex]\[ P_{O_2 \, \text{produced}} = \frac{70000 \, \text{Pa}}{2} = 35000 \, \text{Pa} \][/tex]
5. Calculate the equilibrium constant [tex]\(K_p\)[/tex]:
[tex]\[ K_p = \frac{P_{O_2 \, \text{produced}}}{P_{Cl_2 \, \text{remaining}}^2} \][/tex]
Substituting the values:
[tex]\[ K_p = \frac{35000 \, \text{Pa}}{(30000 \, \text{Pa})^2} \][/tex]
[tex]\[ K_p = \frac{35000}{900000000} \, \text{Pa}^{-1} = 3.888888888888889 \times 10^{-5} \, \text{Pa}^{-1} \][/tex]
6. State the units of [tex]\(K_p\)[/tex]:
Given the formula [tex]\(K_p = \frac{P_{O_2}}{P_{Cl_2}^2}\)[/tex], the units will be:
[tex]\[ \text{Units of } K_p = \text{units of } \frac{\text{Pa}}{\text{Pa}^2} = \text{Pa}^{-1} \][/tex]
### Conclusion:
The equilibrium constant [tex]\(K_p\)[/tex] is [tex]\(3.888888888888889 \times 10^{-5}\)[/tex] and the units are [tex]\(\text{Pa}^{-1}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.