Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Absolutely, let's walk through the solution step by step.
### Given Data:
1. Total pressure ([tex]\(P_{total}\)[/tex]): [tex]\(1.00 \times 10^5 \, \text{Pa}\)[/tex]
2. Temperature ([tex]\(T\)[/tex]): [tex]\(500 \, \text{K}\)[/tex]
3. Initial fraction of [tex]\(Cl_2(g)\)[/tex]: [tex]\(1.0\)[/tex]
4. Fraction of [tex]\(Cl_2(g)\)[/tex] that has reacted: [tex]\(70\%\)[/tex] or [tex]\(0.70\)[/tex]
### Step-by-Step Solution:
1. Calculate the initial pressure of [tex]\(Cl_2\)[/tex] (Initial [tex]\(P_{Cl_2}\)[/tex]):
Since [tex]\(Cl_2\)[/tex] initially represents 100% of the total pressure:
[tex]\[ P_{Cl_2 \, \text{initial}} = P_{total} \times \text{Initial fraction of } Cl_2 \][/tex]
[tex]\[ P_{Cl_2 \, \text{initial}} = 1.00 \times 10^5 \, \text{Pa} \times 1.0 = 100000 \, \text{Pa} \][/tex]
2. Calculate the pressure of [tex]\(Cl_2\)[/tex] that has reacted (Reacted [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{reacted}} = P_{Cl_2 \, \text{initial}} \times \text{Fraction reacted} \][/tex]
[tex]\[ P_{Cl_2 \, \text{reacted}} = 100000 \, \text{Pa} \times 0.70 = 70000 \, \text{Pa} \][/tex]
3. Calculate the remaining pressure of [tex]\(Cl_2\)[/tex] (Remaining [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{remaining}} = P_{Cl_2 \, \text{initial}} - P_{Cl_2 \, \text{reacted}} \][/tex]
[tex]\[ P_{Cl_2 \, \text{remaining}} = 100000 \, \text{Pa} - 70000 \, \text{Pa} = 30000 \, \text{Pa} \][/tex]
4. Calculate the pressure of [tex]\(O_2\)[/tex] produced (Produced [tex]\(P_{O_2}\)[/tex]):
For every 2 moles of [tex]\(Cl_2\)[/tex] reacted, 1 mole [tex]\(O_2\)[/tex] is produced. Thus, the pressure of [tex]\(O_2\)[/tex] produced is half the reacted [tex]\(Cl_2\)[/tex] pressure:
[tex]\[ P_{O_2 \, \text{produced}} = \frac{P_{Cl_2 \, \text{reacted}}}{2} \][/tex]
[tex]\[ P_{O_2 \, \text{produced}} = \frac{70000 \, \text{Pa}}{2} = 35000 \, \text{Pa} \][/tex]
5. Calculate the equilibrium constant [tex]\(K_p\)[/tex]:
[tex]\[ K_p = \frac{P_{O_2 \, \text{produced}}}{P_{Cl_2 \, \text{remaining}}^2} \][/tex]
Substituting the values:
[tex]\[ K_p = \frac{35000 \, \text{Pa}}{(30000 \, \text{Pa})^2} \][/tex]
[tex]\[ K_p = \frac{35000}{900000000} \, \text{Pa}^{-1} = 3.888888888888889 \times 10^{-5} \, \text{Pa}^{-1} \][/tex]
6. State the units of [tex]\(K_p\)[/tex]:
Given the formula [tex]\(K_p = \frac{P_{O_2}}{P_{Cl_2}^2}\)[/tex], the units will be:
[tex]\[ \text{Units of } K_p = \text{units of } \frac{\text{Pa}}{\text{Pa}^2} = \text{Pa}^{-1} \][/tex]
### Conclusion:
The equilibrium constant [tex]\(K_p\)[/tex] is [tex]\(3.888888888888889 \times 10^{-5}\)[/tex] and the units are [tex]\(\text{Pa}^{-1}\)[/tex].
### Given Data:
1. Total pressure ([tex]\(P_{total}\)[/tex]): [tex]\(1.00 \times 10^5 \, \text{Pa}\)[/tex]
2. Temperature ([tex]\(T\)[/tex]): [tex]\(500 \, \text{K}\)[/tex]
3. Initial fraction of [tex]\(Cl_2(g)\)[/tex]: [tex]\(1.0\)[/tex]
4. Fraction of [tex]\(Cl_2(g)\)[/tex] that has reacted: [tex]\(70\%\)[/tex] or [tex]\(0.70\)[/tex]
### Step-by-Step Solution:
1. Calculate the initial pressure of [tex]\(Cl_2\)[/tex] (Initial [tex]\(P_{Cl_2}\)[/tex]):
Since [tex]\(Cl_2\)[/tex] initially represents 100% of the total pressure:
[tex]\[ P_{Cl_2 \, \text{initial}} = P_{total} \times \text{Initial fraction of } Cl_2 \][/tex]
[tex]\[ P_{Cl_2 \, \text{initial}} = 1.00 \times 10^5 \, \text{Pa} \times 1.0 = 100000 \, \text{Pa} \][/tex]
2. Calculate the pressure of [tex]\(Cl_2\)[/tex] that has reacted (Reacted [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{reacted}} = P_{Cl_2 \, \text{initial}} \times \text{Fraction reacted} \][/tex]
[tex]\[ P_{Cl_2 \, \text{reacted}} = 100000 \, \text{Pa} \times 0.70 = 70000 \, \text{Pa} \][/tex]
3. Calculate the remaining pressure of [tex]\(Cl_2\)[/tex] (Remaining [tex]\(P_{Cl_2}\)[/tex]):
[tex]\[ P_{Cl_2 \, \text{remaining}} = P_{Cl_2 \, \text{initial}} - P_{Cl_2 \, \text{reacted}} \][/tex]
[tex]\[ P_{Cl_2 \, \text{remaining}} = 100000 \, \text{Pa} - 70000 \, \text{Pa} = 30000 \, \text{Pa} \][/tex]
4. Calculate the pressure of [tex]\(O_2\)[/tex] produced (Produced [tex]\(P_{O_2}\)[/tex]):
For every 2 moles of [tex]\(Cl_2\)[/tex] reacted, 1 mole [tex]\(O_2\)[/tex] is produced. Thus, the pressure of [tex]\(O_2\)[/tex] produced is half the reacted [tex]\(Cl_2\)[/tex] pressure:
[tex]\[ P_{O_2 \, \text{produced}} = \frac{P_{Cl_2 \, \text{reacted}}}{2} \][/tex]
[tex]\[ P_{O_2 \, \text{produced}} = \frac{70000 \, \text{Pa}}{2} = 35000 \, \text{Pa} \][/tex]
5. Calculate the equilibrium constant [tex]\(K_p\)[/tex]:
[tex]\[ K_p = \frac{P_{O_2 \, \text{produced}}}{P_{Cl_2 \, \text{remaining}}^2} \][/tex]
Substituting the values:
[tex]\[ K_p = \frac{35000 \, \text{Pa}}{(30000 \, \text{Pa})^2} \][/tex]
[tex]\[ K_p = \frac{35000}{900000000} \, \text{Pa}^{-1} = 3.888888888888889 \times 10^{-5} \, \text{Pa}^{-1} \][/tex]
6. State the units of [tex]\(K_p\)[/tex]:
Given the formula [tex]\(K_p = \frac{P_{O_2}}{P_{Cl_2}^2}\)[/tex], the units will be:
[tex]\[ \text{Units of } K_p = \text{units of } \frac{\text{Pa}}{\text{Pa}^2} = \text{Pa}^{-1} \][/tex]
### Conclusion:
The equilibrium constant [tex]\(K_p\)[/tex] is [tex]\(3.888888888888889 \times 10^{-5}\)[/tex] and the units are [tex]\(\text{Pa}^{-1}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.