Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

In a fraction, the numerator and denominator are in the ratio [tex]\(3: 5\)[/tex]. If 9 is added to both the numerator and denominator, then they are in the ratio [tex]\(15:22\)[/tex]. What is the fraction? Solve algebraically.

Sagot :

Let's solve the problem step-by-step:

1. Define the variables:
Let [tex]\( \frac{a}{b} \)[/tex] be the fraction.
Given that the ratio of the numerator to the denominator is [tex]\( 3:5 \)[/tex], we can write:
[tex]\[ \frac{a}{b} = \frac{3}{5} \][/tex]

2. Set up the equation based on the given ratio:
From the above ratio, we can express the numerator [tex]\(a\)[/tex] in terms of the denominator [tex]\(b\)[/tex]:
[tex]\[ a = \frac{3}{5} b \][/tex]

3. Establish the second condition:
It is given that if 9 is added to both the numerator and the denominator, the new fraction is in the ratio [tex]\( 15:22 \)[/tex]. Thus, we can write:
[tex]\[ \frac{a + 9}{b + 9} = \frac{15}{22} \][/tex]

4. Express the second equation in terms of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a + 9 = \frac{15}{22} (b + 9) \][/tex]

5. Substitute [tex]\(a = \frac{3}{5} b \)[/tex] into the second equation:
[tex]\[ \frac{3}{5} b + 9 = \frac{15}{22} (b + 9) \][/tex]

6. Clear the fraction by finding a common denominator and multiplying through:
Multiply both sides by [tex]\( 110 \)[/tex] (which is the least common multiple of 5 and 22):
[tex]\[ 110 \left(\frac{3}{5} b + 9\right) = 110 \left( \frac{15}{22} (b + 9) \right) \][/tex]
Simplify each side:
[tex]\[ 66b + 990 = 75 (b + 9) \][/tex]

7. Distribute and simplify the equation:
[tex]\[ 66b + 990 = 75b + 675 \][/tex]
Rearrange to isolate [tex]\(b\)[/tex]:
[tex]\[ 66b + 990 - 75b = 675 \][/tex]
[tex]\[ -9b + 990 = 675 \][/tex]
Isolate [tex]\(b\)[/tex]:
[tex]\[ -9b = 675 - 990 \][/tex]
[tex]\[ -9b = -315 \][/tex]
[tex]\[ b = \frac{-315}{-9} \][/tex]
[tex]\[ b = 35 \][/tex]

8. Find the value of [tex]\(a\)[/tex]:
Substitute [tex]\( b = 35 \)[/tex] back into [tex]\(a = \frac{3}{5} b\)[/tex]:
[tex]\[ a = \frac{3}{5} \times 35 \][/tex]
[tex]\[ a = 21 \][/tex]

9. Determine the fraction:
Therefore, the fraction is:
[tex]\[ \frac{a}{b} = \frac{21}{35} \][/tex]

We have successfully determined that the fraction is [tex]\( \frac{21}{35} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.