Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
First, let's understand the table provided. The table gives values of [tex]\( D = f(t) \)[/tex], which represent the total US debt in billions of dollars [tex]\( t \)[/tex] years after 2000.
To calculate the average rate of change of the US debt between the years corresponding to [tex]\( t = 1 \)[/tex] and [tex]\( t = 5 \)[/tex], we need to evaluate the expression [tex]\(\frac{f(5) - f(1)}{5 - 1}\)[/tex].
Let's break this down into steps:
1. Identify [tex]\( f(5) \)[/tex] and [tex]\( f(1) \)[/tex] from the table:
- [tex]\( f(1) = 5817.1 \)[/tex] billion dollars.
- [tex]\( f(5) = 7960.4 \)[/tex] billion dollars.
2. Substitute these values into the expression [tex]\(\frac{f(5) - f(1)}{5 - 1}\)[/tex]:
[tex]\[ \frac{f(5) - f(1)}{5 - 1} = \frac{7960.4 - 5817.1}{5 - 1} \][/tex]
3. Calculate the difference in the numerator:
[tex]\[ 7960.4 - 5817.1 = 2143.3 \][/tex]
4. Calculate the difference in the denominator:
[tex]\[ 5 - 1 = 4 \][/tex]
5. Compute the average rate of change:
[tex]\[ \frac{2143.3}{4} = 535.825 \][/tex]
6. Round the answer to one decimal place:
[tex]\[ 535.825 \approx 535.8 \][/tex]
Therefore, the average rate of change of the US debt from [tex]\( t = 1 \)[/tex] to [tex]\( t = 5 \)[/tex] is [tex]\( \boxed{535.8} \)[/tex] billion dollars per year.
This tells us that between the years corresponding to [tex]\( t = 1 \)[/tex] (which is year 2001) and [tex]\( t = 5 \)[/tex] (which is year 2005), the US debt increased on average by approximately [tex]\( 535.8 \)[/tex] billion dollars per year.
To calculate the average rate of change of the US debt between the years corresponding to [tex]\( t = 1 \)[/tex] and [tex]\( t = 5 \)[/tex], we need to evaluate the expression [tex]\(\frac{f(5) - f(1)}{5 - 1}\)[/tex].
Let's break this down into steps:
1. Identify [tex]\( f(5) \)[/tex] and [tex]\( f(1) \)[/tex] from the table:
- [tex]\( f(1) = 5817.1 \)[/tex] billion dollars.
- [tex]\( f(5) = 7960.4 \)[/tex] billion dollars.
2. Substitute these values into the expression [tex]\(\frac{f(5) - f(1)}{5 - 1}\)[/tex]:
[tex]\[ \frac{f(5) - f(1)}{5 - 1} = \frac{7960.4 - 5817.1}{5 - 1} \][/tex]
3. Calculate the difference in the numerator:
[tex]\[ 7960.4 - 5817.1 = 2143.3 \][/tex]
4. Calculate the difference in the denominator:
[tex]\[ 5 - 1 = 4 \][/tex]
5. Compute the average rate of change:
[tex]\[ \frac{2143.3}{4} = 535.825 \][/tex]
6. Round the answer to one decimal place:
[tex]\[ 535.825 \approx 535.8 \][/tex]
Therefore, the average rate of change of the US debt from [tex]\( t = 1 \)[/tex] to [tex]\( t = 5 \)[/tex] is [tex]\( \boxed{535.8} \)[/tex] billion dollars per year.
This tells us that between the years corresponding to [tex]\( t = 1 \)[/tex] (which is year 2001) and [tex]\( t = 5 \)[/tex] (which is year 2005), the US debt increased on average by approximately [tex]\( 535.8 \)[/tex] billion dollars per year.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.