Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To analyze the statement [tex]\(\frac{g(3) - g(0)}{3 - 0} = 5\)[/tex], let's break it down step by step:
1. Understanding the Expression:
- The given expression [tex]\(\frac{g(3) - g(0)}{3 - 0} = 5\)[/tex] is a formula for the average rate of change of the function [tex]\(g(t)\)[/tex] over the interval from [tex]\(t = 0\)[/tex] to [tex]\(t = 3\)[/tex].
- Here, [tex]\(g(t)\)[/tex] represents the market value of the house in thousands of dollars (\[tex]$1000s). 2. Average Rate of Change: - The average rate of change is calculated as the change in the function value over the change in time: \(\frac{\Delta g}{\Delta t}\). - Specifically, \(\Delta g = g(3) - g(0)\) and \(\Delta t = 3 - 0\). - Hence, the equation becomes \(\frac{g(3) - g(0)}{3 - 0} = 5\). 3. Interpreting the Rate: - The statement tells us that the average rate of change of the market value is 5. But remember, this rate is in units of \$[/tex]1000s per year.
4. Converting Units:
- Since the market value [tex]\(g(t)\)[/tex] is in thousands of dollars, a rate of change of 5 implies an increase of \[tex]$5000 per year (because 5 * \$[/tex]1000 = \[tex]$5000). 5. Conclusion: - The positive value 5 indicates an increase. Thus, the statement \(\frac{g(3) - g(0)}{3 - 0} = 5\) tells us that the house's market value increased at an average rate of \$[/tex]5000 per year between years [tex]\(t=0\)[/tex] and [tex]\(t=3\)[/tex].
Here is the concise conclusion:
The house's market value increased at an average rate of \[tex]$5000 per year between years \(t = 0\) and \(t = 3\). Therefore, the correct answer is: - The house's market value increased at an average rate of \$[/tex]5000 per year between years [tex]\(t=0\)[/tex] and [tex]\(t=3\)[/tex].
1. Understanding the Expression:
- The given expression [tex]\(\frac{g(3) - g(0)}{3 - 0} = 5\)[/tex] is a formula for the average rate of change of the function [tex]\(g(t)\)[/tex] over the interval from [tex]\(t = 0\)[/tex] to [tex]\(t = 3\)[/tex].
- Here, [tex]\(g(t)\)[/tex] represents the market value of the house in thousands of dollars (\[tex]$1000s). 2. Average Rate of Change: - The average rate of change is calculated as the change in the function value over the change in time: \(\frac{\Delta g}{\Delta t}\). - Specifically, \(\Delta g = g(3) - g(0)\) and \(\Delta t = 3 - 0\). - Hence, the equation becomes \(\frac{g(3) - g(0)}{3 - 0} = 5\). 3. Interpreting the Rate: - The statement tells us that the average rate of change of the market value is 5. But remember, this rate is in units of \$[/tex]1000s per year.
4. Converting Units:
- Since the market value [tex]\(g(t)\)[/tex] is in thousands of dollars, a rate of change of 5 implies an increase of \[tex]$5000 per year (because 5 * \$[/tex]1000 = \[tex]$5000). 5. Conclusion: - The positive value 5 indicates an increase. Thus, the statement \(\frac{g(3) - g(0)}{3 - 0} = 5\) tells us that the house's market value increased at an average rate of \$[/tex]5000 per year between years [tex]\(t=0\)[/tex] and [tex]\(t=3\)[/tex].
Here is the concise conclusion:
The house's market value increased at an average rate of \[tex]$5000 per year between years \(t = 0\) and \(t = 3\). Therefore, the correct answer is: - The house's market value increased at an average rate of \$[/tex]5000 per year between years [tex]\(t=0\)[/tex] and [tex]\(t=3\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.