Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the empirical formula of the lead oxide formed, follow these steps:
1. Calculate the mass of oxygen that reacted with the lead:
- The mass of the product is given as 1.154 grams.
- The mass of lead is given as 1.000 grams.
- Therefore, the mass of oxygen can be determined by subtracting the mass of lead from the mass of the product.
[tex]\[ \text{Mass of oxygen} = \text{Mass of product} - \text{Mass of lead} = 1.154 \, \text{g} - 1.000 \, \text{g} = 0.154 \, \text{g} \][/tex]
2. Calculate the moles of lead (Pb) in the sample:
- The molar mass of lead (Pb) is 207.2 g/mol.
- Using the given mass of lead, convert it to moles:
[tex]\[ \text{Moles of lead} = \frac{\text{Mass of lead}}{\text{Molar mass of lead}} = \frac{1.000 \, \text{g}}{207.2 \, \text{g/mol}} \approx 0.00483 \, \text{moles} \][/tex]
3. Calculate the moles of oxygen (O) in the sample:
- The molar mass of oxygen (O) is 16.0 g/mol.
- Using the calculated mass of oxygen, convert it to moles:
[tex]\[ \text{Moles of oxygen} = \frac{\text{Mass of oxygen}}{\text{Molar mass of oxygen}} = \frac{0.154 \, \text{g}}{16.0 \, \text{g/mol}} \approx 0.00962 \, \text{moles} \][/tex]
4. Determine the simplest whole-number ratio of moles of lead to moles of oxygen:
- Calculate the ratio of moles of lead to moles of oxygen:
[tex]\[ \text{Ratio of lead} = \frac{\text{Moles of lead}}{\text{Moles of lead}} = \frac{0.00483}{0.00483} = 1 \][/tex]
[tex]\[ \text{Ratio of oxygen} = \frac{\text{Moles of oxygen}}{\text{Moles of lead}} = \frac{0.00962}{0.00483} \approx 2 \][/tex]
5. Empirical formula determination:
- The ratio of lead to oxygen is approximately 1:2.
- Thus, the simplest whole-number ratio is 1:2.
- Therefore, the empirical formula for the lead oxide is [tex]\( \text{PbO}_2 \)[/tex].
So, the empirical formula of the lead oxide is [tex]\( \mathbf{PbO_2} \)[/tex].
1. Calculate the mass of oxygen that reacted with the lead:
- The mass of the product is given as 1.154 grams.
- The mass of lead is given as 1.000 grams.
- Therefore, the mass of oxygen can be determined by subtracting the mass of lead from the mass of the product.
[tex]\[ \text{Mass of oxygen} = \text{Mass of product} - \text{Mass of lead} = 1.154 \, \text{g} - 1.000 \, \text{g} = 0.154 \, \text{g} \][/tex]
2. Calculate the moles of lead (Pb) in the sample:
- The molar mass of lead (Pb) is 207.2 g/mol.
- Using the given mass of lead, convert it to moles:
[tex]\[ \text{Moles of lead} = \frac{\text{Mass of lead}}{\text{Molar mass of lead}} = \frac{1.000 \, \text{g}}{207.2 \, \text{g/mol}} \approx 0.00483 \, \text{moles} \][/tex]
3. Calculate the moles of oxygen (O) in the sample:
- The molar mass of oxygen (O) is 16.0 g/mol.
- Using the calculated mass of oxygen, convert it to moles:
[tex]\[ \text{Moles of oxygen} = \frac{\text{Mass of oxygen}}{\text{Molar mass of oxygen}} = \frac{0.154 \, \text{g}}{16.0 \, \text{g/mol}} \approx 0.00962 \, \text{moles} \][/tex]
4. Determine the simplest whole-number ratio of moles of lead to moles of oxygen:
- Calculate the ratio of moles of lead to moles of oxygen:
[tex]\[ \text{Ratio of lead} = \frac{\text{Moles of lead}}{\text{Moles of lead}} = \frac{0.00483}{0.00483} = 1 \][/tex]
[tex]\[ \text{Ratio of oxygen} = \frac{\text{Moles of oxygen}}{\text{Moles of lead}} = \frac{0.00962}{0.00483} \approx 2 \][/tex]
5. Empirical formula determination:
- The ratio of lead to oxygen is approximately 1:2.
- Thus, the simplest whole-number ratio is 1:2.
- Therefore, the empirical formula for the lead oxide is [tex]\( \text{PbO}_2 \)[/tex].
So, the empirical formula of the lead oxide is [tex]\( \mathbf{PbO_2} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.