Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the probability that the bus arrives either early or on time, we need to add the probabilities of each event occurring. Here are the detailed steps for solving this:
1. Identify the probabilities:
- The probability that the bus arrives early at the bus stop is given as [tex]\(\frac{4}{7}\)[/tex].
- The probability that the bus arrives on time is given as [tex]\(\frac{3}{14}\)[/tex].
2. Find a common denominator:
- To add these fractions, we need to have a common denominator.
In this case, the denominators are 7 and 14. The least common multiple of 7 and 14 is 14. Therefore, we convert [tex]\(\frac{4}{7}\)[/tex] to a fraction with a denominator of 14.
3. Convert [tex]\(\frac{4}{7}\)[/tex] to a fraction with a denominator of 14:
[tex]\[ \frac{4}{7} = \frac{4 \times 2}{7 \times 2} = \frac{8}{14} \][/tex]
4. Add the two probabilities:
- Now, we add [tex]\(\frac{8}{14}\)[/tex] (the converted probability of arriving early) and [tex]\(\frac{3}{14}\)[/tex] (the probability of arriving on time):
[tex]\[ \frac{8}{14} + \frac{3}{14} = \frac{8 + 3}{14} = \frac{11}{14} \][/tex]
5. Simplify the result:
- The fraction [tex]\(\frac{11}{14}\)[/tex] is already in its simplest form as 11 and 14 have no common factors other than 1.
Thus, the probability that the bus arrives early or on time is [tex]\(\frac{11}{14}\)[/tex].
1. Identify the probabilities:
- The probability that the bus arrives early at the bus stop is given as [tex]\(\frac{4}{7}\)[/tex].
- The probability that the bus arrives on time is given as [tex]\(\frac{3}{14}\)[/tex].
2. Find a common denominator:
- To add these fractions, we need to have a common denominator.
In this case, the denominators are 7 and 14. The least common multiple of 7 and 14 is 14. Therefore, we convert [tex]\(\frac{4}{7}\)[/tex] to a fraction with a denominator of 14.
3. Convert [tex]\(\frac{4}{7}\)[/tex] to a fraction with a denominator of 14:
[tex]\[ \frac{4}{7} = \frac{4 \times 2}{7 \times 2} = \frac{8}{14} \][/tex]
4. Add the two probabilities:
- Now, we add [tex]\(\frac{8}{14}\)[/tex] (the converted probability of arriving early) and [tex]\(\frac{3}{14}\)[/tex] (the probability of arriving on time):
[tex]\[ \frac{8}{14} + \frac{3}{14} = \frac{8 + 3}{14} = \frac{11}{14} \][/tex]
5. Simplify the result:
- The fraction [tex]\(\frac{11}{14}\)[/tex] is already in its simplest form as 11 and 14 have no common factors other than 1.
Thus, the probability that the bus arrives early or on time is [tex]\(\frac{11}{14}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.