At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the center and radius of the circle defined by the equation [tex]\( x^2 + y^2 - 6x + 10y + 25 = 0 \)[/tex], we need to rewrite the equation in the standard form of a circle's equation [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex], where [tex]\((h,k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
Here are the detailed steps:
1. Rewrite the equation by grouping the [tex]\(x\)[/tex]-terms and [tex]\(y\)[/tex]-terms:
[tex]\[ x^2 - 6x + y^2 + 10y + 25 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 - 6x \quad \Rightarrow \quad x^2 - 6x + 9 - 9 \quad \Rightarrow \quad (x - 3)^2 - 9 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 + 10y \quad \Rightarrow \quad y^2 + 10y + 25 - 25 \quad \Rightarrow \quad (y + 5)^2 - 25 \][/tex]
4. Substitute back into the equation:
[tex]\[ (x - 3)^2 - 9 + (y + 5)^2 - 25 + 25 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x - 3)^2 - 9 + (y + 5)^2 = 0 \][/tex]
[tex]\[ (x - 3)^2 + (y + 5)^2 - 9 = 0 \][/tex]
[tex]\[ (x - 3)^2 + (y + 5)^2 = 9 \][/tex]
6. Rewrite in the standard circle form [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex]:
[tex]\[ (x - 3)^2 + (y + 5)^2 = 3^2 \][/tex]
From this, we can see that the center of the circle [tex]\((h, k)\)[/tex] is [tex]\((3, -5)\)[/tex] and the radius [tex]\(r\)[/tex] is 3.
Thus, the correct answer is:
[tex]\[ \boxed{A \text{. Center } (3, -5) ; \text{ radius } 3} \][/tex]
Here are the detailed steps:
1. Rewrite the equation by grouping the [tex]\(x\)[/tex]-terms and [tex]\(y\)[/tex]-terms:
[tex]\[ x^2 - 6x + y^2 + 10y + 25 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 - 6x \quad \Rightarrow \quad x^2 - 6x + 9 - 9 \quad \Rightarrow \quad (x - 3)^2 - 9 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 + 10y \quad \Rightarrow \quad y^2 + 10y + 25 - 25 \quad \Rightarrow \quad (y + 5)^2 - 25 \][/tex]
4. Substitute back into the equation:
[tex]\[ (x - 3)^2 - 9 + (y + 5)^2 - 25 + 25 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x - 3)^2 - 9 + (y + 5)^2 = 0 \][/tex]
[tex]\[ (x - 3)^2 + (y + 5)^2 - 9 = 0 \][/tex]
[tex]\[ (x - 3)^2 + (y + 5)^2 = 9 \][/tex]
6. Rewrite in the standard circle form [tex]\( (x - h)^2 + (y - k)^2 = r^2 \)[/tex]:
[tex]\[ (x - 3)^2 + (y + 5)^2 = 3^2 \][/tex]
From this, we can see that the center of the circle [tex]\((h, k)\)[/tex] is [tex]\((3, -5)\)[/tex] and the radius [tex]\(r\)[/tex] is 3.
Thus, the correct answer is:
[tex]\[ \boxed{A \text{. Center } (3, -5) ; \text{ radius } 3} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.