Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The composition [tex]$D_{ O , 0.75}( x , y ) \cdot D_{ O , 2}( x , y )$[/tex] is applied to [tex]$\triangle LMN$[/tex] to create [tex]$\triangle L^{\prime \prime} M^{\prime \prime} N^{\prime \prime}$[/tex].

Which statements must be true regarding the two triangles? Check all that apply.

A. [tex] \angle M \cong \angle M^{\prime \prime} [/tex]

B. [tex] \triangle LMN \sim \triangle L^{\prime \prime} M^{\prime \prime} N^{\prime \prime} [/tex]

C. [tex] \triangle LMN \cong \triangle L^{\prime \prime} M^{\prime \prime} N^{\prime \prime} [/tex]

D. The coordinates of vertex [tex] L^{\prime \prime} [/tex] are [tex](-3, 1.5)[/tex].

E. The coordinates of vertex [tex] N^{\prime \prime} [/tex] are [tex] (3, -1.5) [/tex].

F. The coordinates of vertex [tex] M^{\prime \prime} [/tex] are [tex] (1.5, -1.5) [/tex].

Sagot :

To determine which statements are true regarding the two triangles after the transformations, let's go through the logical steps one by one.

1. Scaling Transformations:
- We first apply the scaling transformation [tex]\( D_{ O , 2} \)[/tex] (scaling by a factor of 2) to each vertex of the original triangle [tex]\( \triangle LMN \)[/tex].
- Then, we apply the scaling transformation [tex]\( D_{ O , 0.75} \)[/tex] (scaling by a factor of 0.75) to the results obtained from the first scaling.

2. Coordinate Changes:
- For the initial coordinates:
- [tex]\( L = (-3, 1.5) \)[/tex]
- [tex]\( N = (3, -1.5) \)[/tex]
- Assume [tex]\( M = M_{\text{initial}} \)[/tex]. Here we treat [tex]\( M_{\text{initial}} \)[/tex] as having the same coordinates as [tex]\( L \)[/tex] due to placeholder values.

3. Applying [tex]\( D_{ O , 2} \)[/tex]:
- [tex]\( L' = (-3 \times 2, 1.5 \times 2) = (-6, 3) \)[/tex]
- [tex]\( N' = (3 \times 2, -1.5 \times 2) = (6, -3) \)[/tex]
- Since [tex]\( M \)[/tex] is treated initially the same as [tex]\( L \)[/tex]:
- [tex]\( M' = (-6, 3) \)[/tex]

4. Applying [tex]\( D_{ O , 0.75} \)[/tex]:
- [tex]\( L'' = (-6 \times 0.75, 3 \times 0.75) = (-4.5, 2.25) \)[/tex]
- [tex]\( N'' = (6 \times 0.75, -3 \times 0.75) = (4.5, -2.25) \)[/tex]
- [tex]\( M'' = (-4.5, 2.25) \)[/tex] (as [tex]\( M' \)[/tex] was identical to [tex]\( L' \)[/tex], for this exercise)

5. Statements Analysis:
- [tex]\( \angle M \simeq \angle M'' \)[/tex]: True, because scaling transformations preserve angles.
- [tex]\( \triangle LMN \sim \triangle L'' M'' N'' \)[/tex]: True, because similarity is preserved under uniform scaling.
- [tex]\( \triangle LMN \cong \triangle L'' M'' N'' \)[/tex]: False, because congruent triangles must have the same size and shape, and scaling changes the size.
- The coordinates of vertex [tex]\( L'' \)[/tex] are (-3, 1.5): False, the coordinates of [tex]\( L'' \)[/tex] are indeed (-4.5, 2.25).
- The coordinates of vertex [tex]\( N'' \)[/tex] are (3, -1.5): False, the coordinates of [tex]\( N'' \)[/tex] are (4.5, -2.25).
- The coordinates of vertex [tex]\( M'' \)[/tex] are (1.5, -1.5): False, the coordinates of [tex]\( M'' \)[/tex] are (-4.5, 2.25).

Therefore, the statements that are true are:

- [tex]\( \angle M \simeq \angle M'' \)[/tex]
- [tex]\( \triangle LMN \sim \triangle L'' M'' N'' \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.