Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\(\left(\frac{3+2i}{2-3i}+\frac{5-i}{2+3i}\right) \times \frac{a}{b}=1\)[/tex], we need to determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the equation.
First, we handle each fraction separately:
1. Simplify [tex]\(\frac{3+2i}{2-3i}\)[/tex].
2. Simplify [tex]\(\frac{5-i}{2+3i}\)[/tex].
Next, add these simplified fractions together to form a single combined fraction.
We then set this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equal to 1.
Thus, we solve:
[tex]\[ \left(\frac{3+2i}{2-3i} + \frac{5-i}{2+3i}\right) \times \frac{a}{b} = 1 \][/tex]
From the problem, we know that the combined fraction evaluates to [tex]\(\frac{a}{b}=1\)[/tex].
Thus, if this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equals 1, we know:
[tex]\[ \frac{a}{b} = \frac{2}{1} \][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = 1 \][/tex]
Hence, the completion of the statement would be:
If [tex]\(\left(\frac{3+2i}{2-3i}+\frac{5-i}{2+3i}\right) \times \frac{a}{b}=1\)[/tex], then [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
First, we handle each fraction separately:
1. Simplify [tex]\(\frac{3+2i}{2-3i}\)[/tex].
2. Simplify [tex]\(\frac{5-i}{2+3i}\)[/tex].
Next, add these simplified fractions together to form a single combined fraction.
We then set this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equal to 1.
Thus, we solve:
[tex]\[ \left(\frac{3+2i}{2-3i} + \frac{5-i}{2+3i}\right) \times \frac{a}{b} = 1 \][/tex]
From the problem, we know that the combined fraction evaluates to [tex]\(\frac{a}{b}=1\)[/tex].
Thus, if this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equals 1, we know:
[tex]\[ \frac{a}{b} = \frac{2}{1} \][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = 1 \][/tex]
Hence, the completion of the statement would be:
If [tex]\(\left(\frac{3+2i}{2-3i}+\frac{5-i}{2+3i}\right) \times \frac{a}{b}=1\)[/tex], then [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.