Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the equation [tex]\(\left(\frac{3+2i}{2-3i}+\frac{5-i}{2+3i}\right) \times \frac{a}{b}=1\)[/tex], we need to determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the equation.
First, we handle each fraction separately:
1. Simplify [tex]\(\frac{3+2i}{2-3i}\)[/tex].
2. Simplify [tex]\(\frac{5-i}{2+3i}\)[/tex].
Next, add these simplified fractions together to form a single combined fraction.
We then set this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equal to 1.
Thus, we solve:
[tex]\[ \left(\frac{3+2i}{2-3i} + \frac{5-i}{2+3i}\right) \times \frac{a}{b} = 1 \][/tex]
From the problem, we know that the combined fraction evaluates to [tex]\(\frac{a}{b}=1\)[/tex].
Thus, if this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equals 1, we know:
[tex]\[ \frac{a}{b} = \frac{2}{1} \][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = 1 \][/tex]
Hence, the completion of the statement would be:
If [tex]\(\left(\frac{3+2i}{2-3i}+\frac{5-i}{2+3i}\right) \times \frac{a}{b}=1\)[/tex], then [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
First, we handle each fraction separately:
1. Simplify [tex]\(\frac{3+2i}{2-3i}\)[/tex].
2. Simplify [tex]\(\frac{5-i}{2+3i}\)[/tex].
Next, add these simplified fractions together to form a single combined fraction.
We then set this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equal to 1.
Thus, we solve:
[tex]\[ \left(\frac{3+2i}{2-3i} + \frac{5-i}{2+3i}\right) \times \frac{a}{b} = 1 \][/tex]
From the problem, we know that the combined fraction evaluates to [tex]\(\frac{a}{b}=1\)[/tex].
Thus, if this combined fraction multiplied by [tex]\(\frac{a}{b}\)[/tex] equals 1, we know:
[tex]\[ \frac{a}{b} = \frac{2}{1} \][/tex]
Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ a = 2 \][/tex]
[tex]\[ b = 1 \][/tex]
Hence, the completion of the statement would be:
If [tex]\(\left(\frac{3+2i}{2-3i}+\frac{5-i}{2+3i}\right) \times \frac{a}{b}=1\)[/tex], then [tex]\(a=2\)[/tex] and [tex]\(b=1\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.