At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the element in row 2, column 3 of the matrix product [tex]\( B \cdot A \)[/tex], let's go through the steps of calculating the matrix multiplication:
Given matrices:
[tex]\[ A = \begin{bmatrix} 1 & 2 & -4 \\ 0 & 3 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} -1 & 0 \\ 2 & 4 \\ 7 & 2 \end{bmatrix} \][/tex]
To multiply [tex]\( B \)[/tex] (a 3x2 matrix) by [tex]\( A \)[/tex] (a 2x3 matrix), the resulting matrix [tex]\( C = B \cdot A \)[/tex] will be a 3x3 matrix. The element in the resulting matrix [tex]\( C \)[/tex] at position [tex]\( (i, j) \)[/tex] is obtained by taking the dot product of the [tex]\( i \)[/tex]-th row of [tex]\( B \)[/tex] with the [tex]\( j \)[/tex]-th column of [tex]\( A \)[/tex].
To find the element in row 2, column 3 of [tex]\( C \)[/tex], we need the dot product of the 2nd row of [tex]\( B \)[/tex] and the 3rd column of [tex]\( A \)[/tex].
Let's denote the 2nd row of [tex]\( B \)[/tex] as [tex]\( B_{2} = [2, 4] \)[/tex] and the 3rd column of [tex]\( A \)[/tex] as [tex]\( A_{3} = [-4, -1] \)[/tex]. The dot product is calculated as follows:
[tex]\[ (2 \times -4) + (4 \times -1) \][/tex]
[tex]\[ = (-8) + (-4) \][/tex]
[tex]\[ = -12 \][/tex]
Thus, the element in row 2, column 3 of the matrix product [tex]\( B \cdot A \)[/tex] is:
[tex]\[ -12 \][/tex]
Given matrices:
[tex]\[ A = \begin{bmatrix} 1 & 2 & -4 \\ 0 & 3 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} -1 & 0 \\ 2 & 4 \\ 7 & 2 \end{bmatrix} \][/tex]
To multiply [tex]\( B \)[/tex] (a 3x2 matrix) by [tex]\( A \)[/tex] (a 2x3 matrix), the resulting matrix [tex]\( C = B \cdot A \)[/tex] will be a 3x3 matrix. The element in the resulting matrix [tex]\( C \)[/tex] at position [tex]\( (i, j) \)[/tex] is obtained by taking the dot product of the [tex]\( i \)[/tex]-th row of [tex]\( B \)[/tex] with the [tex]\( j \)[/tex]-th column of [tex]\( A \)[/tex].
To find the element in row 2, column 3 of [tex]\( C \)[/tex], we need the dot product of the 2nd row of [tex]\( B \)[/tex] and the 3rd column of [tex]\( A \)[/tex].
Let's denote the 2nd row of [tex]\( B \)[/tex] as [tex]\( B_{2} = [2, 4] \)[/tex] and the 3rd column of [tex]\( A \)[/tex] as [tex]\( A_{3} = [-4, -1] \)[/tex]. The dot product is calculated as follows:
[tex]\[ (2 \times -4) + (4 \times -1) \][/tex]
[tex]\[ = (-8) + (-4) \][/tex]
[tex]\[ = -12 \][/tex]
Thus, the element in row 2, column 3 of the matrix product [tex]\( B \cdot A \)[/tex] is:
[tex]\[ -12 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.