Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let's break this problem down step-by-step to find the solution.
### Part 1: Compound Amount Formula
The formula to find the compound amount when interest is compounded periodically is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A \)[/tex] is the compound amount.
- [tex]\( P \)[/tex] is the principal amount.
- [tex]\( r \)[/tex] is the annual interest rate (as a decimal).
- [tex]\( n \)[/tex] is the number of times the interest is compounded per year.
- [tex]\( t \)[/tex] is the time in years.
Given:
- Principal [tex]\( P = 12000 \)[/tex]
- Annual interest rate [tex]\( r = 10\% = 0.10 \)[/tex]
- Time [tex]\( t = 1 \)[/tex] year
- Compounded half-yearly [tex]\( n = 2 \)[/tex]
### Part 2: Calculate Compound Amount and Compound Interest
First, plug the values into the compound amount formula:
[tex]\[ A = 12000 \left(1 + \frac{0.10}{2}\right)^{2 \times 1} \][/tex]
Evaluate the terms inside the parentheses and the exponent:
[tex]\[ A = 12000 \left(1 + 0.05\right)^{2} \][/tex]
[tex]\[ A = 12000 \left(1.05\right)^{2} \][/tex]
[tex]\[ A = 12000 \times 1.1025 \][/tex]
[tex]\[ A = 13230.0 \][/tex]
The compound amount after 1 year is [tex]\( A = 13230.0 \)[/tex].
The compound interest is the difference between the compound amount and the principal:
[tex]\[ \text{Compound Interest} = A - P \][/tex]
[tex]\[ \text{Compound Interest} = 13230.0 - 12000 \][/tex]
[tex]\[ \text{Compound Interest} = 1230.0 \][/tex]
### Part 3: Calculate Number of Copies
To find out how many copies of books costing Rs. 41 each can be purchased with the compound interest, we use the following calculation:
[tex]\[ \text{Number of Copies} = \frac{\text{Compound Interest}}{\text{Cost per Copy}} \][/tex]
[tex]\[ \text{Number of Copies} = \frac{1230.0}{41} \][/tex]
[tex]\[ \text{Number of Copies} \approx 30.0 \][/tex]
Therefore, with the compound interest of Rs. 1230.0, you can purchase approximately 30 copies of books costing Rs. 41 each.
### Summary:
1. Compound Amount: [tex]\( A = 13230.0 \)[/tex]
2. Compound Interest: [tex]\( \text{Compound Interest} = 1230.0 \)[/tex]
3. Number of Copies: [tex]\( \text{Number of Copies} = 30 \)[/tex]
This completes the detailed step-by-step solution.
### Part 1: Compound Amount Formula
The formula to find the compound amount when interest is compounded periodically is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A \)[/tex] is the compound amount.
- [tex]\( P \)[/tex] is the principal amount.
- [tex]\( r \)[/tex] is the annual interest rate (as a decimal).
- [tex]\( n \)[/tex] is the number of times the interest is compounded per year.
- [tex]\( t \)[/tex] is the time in years.
Given:
- Principal [tex]\( P = 12000 \)[/tex]
- Annual interest rate [tex]\( r = 10\% = 0.10 \)[/tex]
- Time [tex]\( t = 1 \)[/tex] year
- Compounded half-yearly [tex]\( n = 2 \)[/tex]
### Part 2: Calculate Compound Amount and Compound Interest
First, plug the values into the compound amount formula:
[tex]\[ A = 12000 \left(1 + \frac{0.10}{2}\right)^{2 \times 1} \][/tex]
Evaluate the terms inside the parentheses and the exponent:
[tex]\[ A = 12000 \left(1 + 0.05\right)^{2} \][/tex]
[tex]\[ A = 12000 \left(1.05\right)^{2} \][/tex]
[tex]\[ A = 12000 \times 1.1025 \][/tex]
[tex]\[ A = 13230.0 \][/tex]
The compound amount after 1 year is [tex]\( A = 13230.0 \)[/tex].
The compound interest is the difference between the compound amount and the principal:
[tex]\[ \text{Compound Interest} = A - P \][/tex]
[tex]\[ \text{Compound Interest} = 13230.0 - 12000 \][/tex]
[tex]\[ \text{Compound Interest} = 1230.0 \][/tex]
### Part 3: Calculate Number of Copies
To find out how many copies of books costing Rs. 41 each can be purchased with the compound interest, we use the following calculation:
[tex]\[ \text{Number of Copies} = \frac{\text{Compound Interest}}{\text{Cost per Copy}} \][/tex]
[tex]\[ \text{Number of Copies} = \frac{1230.0}{41} \][/tex]
[tex]\[ \text{Number of Copies} \approx 30.0 \][/tex]
Therefore, with the compound interest of Rs. 1230.0, you can purchase approximately 30 copies of books costing Rs. 41 each.
### Summary:
1. Compound Amount: [tex]\( A = 13230.0 \)[/tex]
2. Compound Interest: [tex]\( \text{Compound Interest} = 1230.0 \)[/tex]
3. Number of Copies: [tex]\( \text{Number of Copies} = 30 \)[/tex]
This completes the detailed step-by-step solution.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.