Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To express [tex]\(\frac{x^m}{x^n}\)[/tex] as a power of [tex]\(x\)[/tex], we can use the rules of exponents. Let's go through the solution step by step:
1. Understand the problem:
We need to simplify the expression [tex]\(\frac{x^m}{x^n}\)[/tex], where [tex]\(x\)[/tex] is the base and [tex]\(m\)[/tex] and [tex]\(n\)[/tex] are the exponents.
2. Apply the quotient rule of exponents:
The quotient rule of exponents states that when you divide powers with the same base, you subtract the exponents. The rule is:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]
Here, the base [tex]\(a\)[/tex] is the same in both the numerator and the denominator.
3. Simplify the given expression:
Using the quotient rule of exponents, we can simplify [tex]\(\frac{x^m}{x^n}\)[/tex] as follows:
[tex]\[ \frac{x^m}{x^n} = x^{m-n} \][/tex]
So, the expression [tex]\(\frac{x^m}{x^n}\)[/tex] can be written as [tex]\(x^{m-n}\)[/tex].
1. Understand the problem:
We need to simplify the expression [tex]\(\frac{x^m}{x^n}\)[/tex], where [tex]\(x\)[/tex] is the base and [tex]\(m\)[/tex] and [tex]\(n\)[/tex] are the exponents.
2. Apply the quotient rule of exponents:
The quotient rule of exponents states that when you divide powers with the same base, you subtract the exponents. The rule is:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]
Here, the base [tex]\(a\)[/tex] is the same in both the numerator and the denominator.
3. Simplify the given expression:
Using the quotient rule of exponents, we can simplify [tex]\(\frac{x^m}{x^n}\)[/tex] as follows:
[tex]\[ \frac{x^m}{x^n} = x^{m-n} \][/tex]
So, the expression [tex]\(\frac{x^m}{x^n}\)[/tex] can be written as [tex]\(x^{m-n}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.