Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the Highest Common Factor (HCF) of the two given polynomials [tex]\( x^5 + 2x^4 + x^3 \)[/tex] and [tex]\( x^7 - x^5 \)[/tex], we need to determine the largest polynomial that divides both of them without leaving a remainder. Let's proceed step-by-step.
### Step 1: Factorize Each Polynomial
#### Polynomial 1: [tex]\( x^5 + 2x^4 + x^3 \)[/tex]
First, let's factor out the common factor [tex]\( x^3 \)[/tex]:
[tex]\[ x^5 + 2x^4 + x^3 = x^3(x^2 + 2x + 1) \][/tex]
We can further factorize the quadratic [tex]\( x^2 + 2x + 1 \)[/tex]:
[tex]\[ x^2 + 2x + 1 = (x + 1)^2 \][/tex]
So, the factorized form of the first polynomial is:
[tex]\[ x^5 + 2x^4 + x^3 = x^3(x + 1)^2 \][/tex]
#### Polynomial 2: [tex]\( x^7 - x^5 \)[/tex]
Factor out the common factor [tex]\( x^5 \)[/tex]:
[tex]\[ x^7 - x^5 = x^5(x^2 - 1) \][/tex]
We can further factorize the difference of squares [tex]\( x^2 - 1 \)[/tex]:
[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]
So, the factorized form of the second polynomial is:
[tex]\[ x^7 - x^5 = x^5(x + 1)(x - 1) \][/tex]
### Step 2: Determine the Common Factors
Now, we compare the factorized forms to find the common factors:
- For [tex]\( x^5 + 2x^4 + x^3 \)[/tex], we have [tex]\( x^3(x + 1)^2 \)[/tex].
- For [tex]\( x^7 - x^5 \)[/tex], we have [tex]\( x^5(x + 1)(x - 1) \)[/tex].
The common factors in both polynomials are [tex]\( x^3 \)[/tex] and [tex]\( (x + 1) \)[/tex]. However, [tex]\( x^5 \)[/tex] has [tex]\( x^3 \)[/tex] as a common factor instead of [tex]\( x^5 \)[/tex].
### Step 3: Identify the Greatest Common Factor (GCF)
Among the common factors, the least powers should be considered:
- The highest power of [tex]\( x \)[/tex] common to both polynomials is [tex]\( x^3 \)[/tex].
- The factor [tex]\( (x + 1) \)[/tex] is present in both as well, but only [tex]\( (x + 1)^1 \)[/tex] is the maximum shared across both in the smallest power form.
So, the HCF (Greatest Common Factor) of the given polynomials is:
[tex]\[ \boxed{x^3} \][/tex]
Thus, the correct answer is:
C) [tex]\( x^3 \)[/tex]
### Step 1: Factorize Each Polynomial
#### Polynomial 1: [tex]\( x^5 + 2x^4 + x^3 \)[/tex]
First, let's factor out the common factor [tex]\( x^3 \)[/tex]:
[tex]\[ x^5 + 2x^4 + x^3 = x^3(x^2 + 2x + 1) \][/tex]
We can further factorize the quadratic [tex]\( x^2 + 2x + 1 \)[/tex]:
[tex]\[ x^2 + 2x + 1 = (x + 1)^2 \][/tex]
So, the factorized form of the first polynomial is:
[tex]\[ x^5 + 2x^4 + x^3 = x^3(x + 1)^2 \][/tex]
#### Polynomial 2: [tex]\( x^7 - x^5 \)[/tex]
Factor out the common factor [tex]\( x^5 \)[/tex]:
[tex]\[ x^7 - x^5 = x^5(x^2 - 1) \][/tex]
We can further factorize the difference of squares [tex]\( x^2 - 1 \)[/tex]:
[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]
So, the factorized form of the second polynomial is:
[tex]\[ x^7 - x^5 = x^5(x + 1)(x - 1) \][/tex]
### Step 2: Determine the Common Factors
Now, we compare the factorized forms to find the common factors:
- For [tex]\( x^5 + 2x^4 + x^3 \)[/tex], we have [tex]\( x^3(x + 1)^2 \)[/tex].
- For [tex]\( x^7 - x^5 \)[/tex], we have [tex]\( x^5(x + 1)(x - 1) \)[/tex].
The common factors in both polynomials are [tex]\( x^3 \)[/tex] and [tex]\( (x + 1) \)[/tex]. However, [tex]\( x^5 \)[/tex] has [tex]\( x^3 \)[/tex] as a common factor instead of [tex]\( x^5 \)[/tex].
### Step 3: Identify the Greatest Common Factor (GCF)
Among the common factors, the least powers should be considered:
- The highest power of [tex]\( x \)[/tex] common to both polynomials is [tex]\( x^3 \)[/tex].
- The factor [tex]\( (x + 1) \)[/tex] is present in both as well, but only [tex]\( (x + 1)^1 \)[/tex] is the maximum shared across both in the smallest power form.
So, the HCF (Greatest Common Factor) of the given polynomials is:
[tex]\[ \boxed{x^3} \][/tex]
Thus, the correct answer is:
C) [tex]\( x^3 \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.