Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the function [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex] and examine each statement one by one to determine their validity:
1. The domain is all real numbers:
- For the function [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], [tex]\( x \)[/tex] can take any real value. There are no restrictions on [tex]\( x \)[/tex].
- Therefore, the statement "The domain is all real numbers" is True.
2. The domain is [tex]\( x > 0 \)[/tex]:
- As determined above, the domain of [tex]\( f(x) = b^x \)[/tex] includes all real numbers, not just [tex]\( x > 0 \)[/tex].
- Therefore, the statement "The domain is [tex]\( x > 0 \)[/tex]" is False.
3. The range is all real numbers:
- For [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], the output (range) of [tex]\( f(x) \)[/tex] is always positive and never zero or negative.
- Therefore, the range is not all real numbers.
- Thus, the statement "The range is all real numbers" is False.
4. The range is [tex]\( y > 0 \)[/tex]:
- As mentioned above, [tex]\( f(x) = b^x \)[/tex] produces positive values for all [tex]\( x \)[/tex]. So the range is indeed [tex]\( y > 0 \)[/tex].
- Therefore, the statement "The range is [tex]\( y > 0 \)[/tex]" is True.
5. The graph has an [tex]\( x \)[/tex]-intercept of 1:
- The [tex]\( x \)[/tex]-intercept of a function is the point where the graph crosses the [tex]\( x \)[/tex]-axis, which would happen when [tex]\( y = 0 \)[/tex].
- For [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], the output is always positive and never zero, hence there is no [tex]\( x \)[/tex]-intercept.
- Therefore, the statement "The graph has an [tex]\( x \)[/tex]-intercept of 1" is False.
6. The graph has a [tex]\( y \)[/tex]-intercept of 1:
- The [tex]\( y \)[/tex]-intercept of a function is the point where the graph crosses the [tex]\( y \)[/tex]-axis, which happens when [tex]\( x = 0 \)[/tex].
- For [tex]\( f(x) = b^x \)[/tex], substituting [tex]\( x = 0 \)[/tex] gives [tex]\( f(0) = b^0 = 1 \)[/tex].
- Therefore, the statement "The graph has a [tex]\( y \)[/tex]-intercept of 1" is True.
7. The function is always increasing:
- For [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], as [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] decreases.
- Therefore, the statement "The function is always increasing" is False.
8. The function is always decreasing:
- As stated above, for [tex]\( 0 < b < 1 \)[/tex], the function [tex]\( f(x) = b^x \)[/tex] decreases as [tex]\( x \)[/tex] increases.
- Therefore, the statement "The function is always decreasing" is True.
Thus, we compile the following verified truths:
1. True
2. False
3. False
4. True
5. False
6. True
7. False
8. True
The statements that are true for [tex]\( f(x)=b^x \)[/tex] where [tex]\( 0- The domain is all real numbers.
- The range is [tex]\( y > 0 \)[/tex].
- The graph has a [tex]\( y \)[/tex]-intercept of 1.
- The function is always decreasing.
1. The domain is all real numbers:
- For the function [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], [tex]\( x \)[/tex] can take any real value. There are no restrictions on [tex]\( x \)[/tex].
- Therefore, the statement "The domain is all real numbers" is True.
2. The domain is [tex]\( x > 0 \)[/tex]:
- As determined above, the domain of [tex]\( f(x) = b^x \)[/tex] includes all real numbers, not just [tex]\( x > 0 \)[/tex].
- Therefore, the statement "The domain is [tex]\( x > 0 \)[/tex]" is False.
3. The range is all real numbers:
- For [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], the output (range) of [tex]\( f(x) \)[/tex] is always positive and never zero or negative.
- Therefore, the range is not all real numbers.
- Thus, the statement "The range is all real numbers" is False.
4. The range is [tex]\( y > 0 \)[/tex]:
- As mentioned above, [tex]\( f(x) = b^x \)[/tex] produces positive values for all [tex]\( x \)[/tex]. So the range is indeed [tex]\( y > 0 \)[/tex].
- Therefore, the statement "The range is [tex]\( y > 0 \)[/tex]" is True.
5. The graph has an [tex]\( x \)[/tex]-intercept of 1:
- The [tex]\( x \)[/tex]-intercept of a function is the point where the graph crosses the [tex]\( x \)[/tex]-axis, which would happen when [tex]\( y = 0 \)[/tex].
- For [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], the output is always positive and never zero, hence there is no [tex]\( x \)[/tex]-intercept.
- Therefore, the statement "The graph has an [tex]\( x \)[/tex]-intercept of 1" is False.
6. The graph has a [tex]\( y \)[/tex]-intercept of 1:
- The [tex]\( y \)[/tex]-intercept of a function is the point where the graph crosses the [tex]\( y \)[/tex]-axis, which happens when [tex]\( x = 0 \)[/tex].
- For [tex]\( f(x) = b^x \)[/tex], substituting [tex]\( x = 0 \)[/tex] gives [tex]\( f(0) = b^0 = 1 \)[/tex].
- Therefore, the statement "The graph has a [tex]\( y \)[/tex]-intercept of 1" is True.
7. The function is always increasing:
- For [tex]\( f(x) = b^x \)[/tex] where [tex]\( 0 < b < 1 \)[/tex], as [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] decreases.
- Therefore, the statement "The function is always increasing" is False.
8. The function is always decreasing:
- As stated above, for [tex]\( 0 < b < 1 \)[/tex], the function [tex]\( f(x) = b^x \)[/tex] decreases as [tex]\( x \)[/tex] increases.
- Therefore, the statement "The function is always decreasing" is True.
Thus, we compile the following verified truths:
1. True
2. False
3. False
4. True
5. False
6. True
7. False
8. True
The statements that are true for [tex]\( f(x)=b^x \)[/tex] where [tex]\( 0- The domain is all real numbers.
- The range is [tex]\( y > 0 \)[/tex].
- The graph has a [tex]\( y \)[/tex]-intercept of 1.
- The function is always decreasing.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.