Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine how many hours earlier Sanya first checked her thermometer, given that the temperature dropped [tex]\( 1.4 \)[/tex] degrees per hour and it dropped a total of [tex]\( 21 \)[/tex] degrees by 6 a.m., we need to find an expression to calculate the number of hours it took for the temperature to drop those [tex]\( 21 \)[/tex] degrees.
First, identify the variables involved:
- The steady rate of temperature drop is [tex]\( 1.4 \)[/tex] degrees per hour.
- The total temperature drop is [tex]\( 21 \)[/tex] degrees.
To find the number of hours [tex]\( h \)[/tex] that had passed for the temperature to drop [tex]\( 21 \)[/tex] degrees at a rate of [tex]\( 1.4 \)[/tex] degrees per hour, use the equation:
[tex]\[ \text{Total temperature drop} = \text{Rate of temperature drop} \times \text{Number of hours} \][/tex]
This can be written as:
[tex]\[ 21 = 1.4 \times h \][/tex]
Next, solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{21}{1.4} \][/tex]
Therefore, the correct expression to find how many hours earlier she had checked the thermometer is:
[tex]\[ 21 \div 1.4 \][/tex]
None of the options provided directly match this expression. However, the division expression translates to [tex]\( 21 + (-1.4h) \)[/tex] if you are considering an hourly sequence of temperature reduction by 1.4 degrees until the total becomes 21 degrees.
Given the options listed:
- [tex]\( -21 + -1.4 \)[/tex]
- [tex]\( -1.4 + -21 \)[/tex]
- [tex]\( -21 + 1.4 \)[/tex]
- [tex]\( 21 + -1.4 \)[/tex]
The most plausible option aligned with the correct approach [tex]\( 21 \div 1.4 \)[/tex] is
[tex]\[ 21 + -1.4 \][/tex]
Therefore, the correct option is:
[tex]\[ 21 + -1.4 \][/tex]
First, identify the variables involved:
- The steady rate of temperature drop is [tex]\( 1.4 \)[/tex] degrees per hour.
- The total temperature drop is [tex]\( 21 \)[/tex] degrees.
To find the number of hours [tex]\( h \)[/tex] that had passed for the temperature to drop [tex]\( 21 \)[/tex] degrees at a rate of [tex]\( 1.4 \)[/tex] degrees per hour, use the equation:
[tex]\[ \text{Total temperature drop} = \text{Rate of temperature drop} \times \text{Number of hours} \][/tex]
This can be written as:
[tex]\[ 21 = 1.4 \times h \][/tex]
Next, solve for [tex]\( h \)[/tex]:
[tex]\[ h = \frac{21}{1.4} \][/tex]
Therefore, the correct expression to find how many hours earlier she had checked the thermometer is:
[tex]\[ 21 \div 1.4 \][/tex]
None of the options provided directly match this expression. However, the division expression translates to [tex]\( 21 + (-1.4h) \)[/tex] if you are considering an hourly sequence of temperature reduction by 1.4 degrees until the total becomes 21 degrees.
Given the options listed:
- [tex]\( -21 + -1.4 \)[/tex]
- [tex]\( -1.4 + -21 \)[/tex]
- [tex]\( -21 + 1.4 \)[/tex]
- [tex]\( 21 + -1.4 \)[/tex]
The most plausible option aligned with the correct approach [tex]\( 21 \div 1.4 \)[/tex] is
[tex]\[ 21 + -1.4 \][/tex]
Therefore, the correct option is:
[tex]\[ 21 + -1.4 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.