Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the inverse of the logarithmic function [tex]\( f(x) = \log_2 x \)[/tex], we need to understand the concept of inverse functions. The inverse function essentially "reverses" the operation of the original function.
1. Define the function and its purpose:
- The function [tex]\( f(x) = \log_2 x \)[/tex] means finding a power [tex]\( y \)[/tex] (output) such that [tex]\( 2^y = x \)[/tex] (input).
2. Rewrite the function in exponentiation form:
- If [tex]\( y = \log_2 x \)[/tex], this implies that [tex]\( 2^y = x \)[/tex].
3. Solve for the input [tex]\( x \)[/tex] in terms of the output [tex]\( y \)[/tex]:
- To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we need to swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and then solve for the new output in terms of the new input.
- Swapping [tex]\( x \)[/tex] and [tex]\( y \)[/tex] gives [tex]\( x = \log_2 y \)[/tex], which means [tex]\( 2^x = y \)[/tex].
4. Writing the inverse function:
- Since [tex]\( 2^x = y \)[/tex], the inverse function [tex]\( f^{-1}(x) \)[/tex] is [tex]\( 2^x \)[/tex].
Hence, the inverse of the function [tex]\( f(x) = \log_2 x \)[/tex] is:
[tex]\[ f^{-1}(x) = 2^x \][/tex]
Therefore, the correct answer is:
[tex]\[ f^{-1}(x) = 2^x \][/tex]
1. Define the function and its purpose:
- The function [tex]\( f(x) = \log_2 x \)[/tex] means finding a power [tex]\( y \)[/tex] (output) such that [tex]\( 2^y = x \)[/tex] (input).
2. Rewrite the function in exponentiation form:
- If [tex]\( y = \log_2 x \)[/tex], this implies that [tex]\( 2^y = x \)[/tex].
3. Solve for the input [tex]\( x \)[/tex] in terms of the output [tex]\( y \)[/tex]:
- To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we need to swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex], and then solve for the new output in terms of the new input.
- Swapping [tex]\( x \)[/tex] and [tex]\( y \)[/tex] gives [tex]\( x = \log_2 y \)[/tex], which means [tex]\( 2^x = y \)[/tex].
4. Writing the inverse function:
- Since [tex]\( 2^x = y \)[/tex], the inverse function [tex]\( f^{-1}(x) \)[/tex] is [tex]\( 2^x \)[/tex].
Hence, the inverse of the function [tex]\( f(x) = \log_2 x \)[/tex] is:
[tex]\[ f^{-1}(x) = 2^x \][/tex]
Therefore, the correct answer is:
[tex]\[ f^{-1}(x) = 2^x \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.