Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the equation step-by-step.
The given equation is:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = 10^{\log_{10} x} \][/tex]
To solve this, we can use properties of logarithms and exponents.
1. Simplify the right-hand side:
Since [tex]\(10^{\log_{10} x} = x\)[/tex], we can rewrite the equation as:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = x \][/tex]
2. Assuming [tex]\(x \neq 0\)[/tex], take the logarithm base 10 of both sides to simplify:
[tex]\[ \log_{10} \left( x^{\log_{10} \left( \frac{5x}{2} \right)} \right) = \log_{10} (x) \][/tex]
3. Apply the power rule of logarithms ([tex]\(\log_{10}(a^b) = b \log_{10}(a)\)[/tex]):
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) \cdot \log_{10}(x) = \log_{10}(x) \][/tex]
4. Since [tex]\( \log_{10}(x) \)[/tex] is not zero (otherwise [tex]\(x\)[/tex] would be 1, which we will check later), we can cancel [tex]\( \log_{10}(x) \)[/tex] from both sides:
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) = 1 \][/tex]
5. Solve for [tex]\(\frac{5x}{2}\)[/tex]:
Recall that if [tex]\(\log_{10}(a) = b\)[/tex], then [tex]\(a = 10^b\)[/tex]. So,
[tex]\[ \frac{5x}{2} = 10 \][/tex]
6. Solve for [tex]\(x\)[/tex]:
[tex]\[ 5x = 20 \][/tex]
[tex]\[ x = 4 \][/tex]
Now, let's verify if there are any other potential solutions or contradictions. Let's check if [tex]\(x = 1\)[/tex] could be a solution by plugging it back into the original equation:
For [tex]\(x = 1\)[/tex]:
[tex]\[ 1^{\log_{10} \left( \frac{5 \cdot 1}{2} \right)} \neq 10^{\log_{10} 1} \][/tex]
This does not hold since [tex]\(\log_{10}1 = 0\)[/tex] therefore [tex]\(10^0 = 1\)[/tex]. Also, the left side would be [tex]\(1^{\log_{10}\left(2.5\right)} \neq 1\)[/tex].
No other [tex]\(x\)[/tex] satisfies the equation other than [tex]\(x = 4\)[/tex]. As [tex]\(4\)[/tex] is the only root, its sum is simply [tex]\(4\)[/tex].
Thus, the sum of the real roots of the equation is:
[tex]\[ \boxed{0} \][/tex]
The given equation is:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = 10^{\log_{10} x} \][/tex]
To solve this, we can use properties of logarithms and exponents.
1. Simplify the right-hand side:
Since [tex]\(10^{\log_{10} x} = x\)[/tex], we can rewrite the equation as:
[tex]\[ x^{\log_{10} \left( \frac{5x}{2} \right)} = x \][/tex]
2. Assuming [tex]\(x \neq 0\)[/tex], take the logarithm base 10 of both sides to simplify:
[tex]\[ \log_{10} \left( x^{\log_{10} \left( \frac{5x}{2} \right)} \right) = \log_{10} (x) \][/tex]
3. Apply the power rule of logarithms ([tex]\(\log_{10}(a^b) = b \log_{10}(a)\)[/tex]):
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) \cdot \log_{10}(x) = \log_{10}(x) \][/tex]
4. Since [tex]\( \log_{10}(x) \)[/tex] is not zero (otherwise [tex]\(x\)[/tex] would be 1, which we will check later), we can cancel [tex]\( \log_{10}(x) \)[/tex] from both sides:
[tex]\[ \log_{10} \left( \frac{5x}{2} \right) = 1 \][/tex]
5. Solve for [tex]\(\frac{5x}{2}\)[/tex]:
Recall that if [tex]\(\log_{10}(a) = b\)[/tex], then [tex]\(a = 10^b\)[/tex]. So,
[tex]\[ \frac{5x}{2} = 10 \][/tex]
6. Solve for [tex]\(x\)[/tex]:
[tex]\[ 5x = 20 \][/tex]
[tex]\[ x = 4 \][/tex]
Now, let's verify if there are any other potential solutions or contradictions. Let's check if [tex]\(x = 1\)[/tex] could be a solution by plugging it back into the original equation:
For [tex]\(x = 1\)[/tex]:
[tex]\[ 1^{\log_{10} \left( \frac{5 \cdot 1}{2} \right)} \neq 10^{\log_{10} 1} \][/tex]
This does not hold since [tex]\(\log_{10}1 = 0\)[/tex] therefore [tex]\(10^0 = 1\)[/tex]. Also, the left side would be [tex]\(1^{\log_{10}\left(2.5\right)} \neq 1\)[/tex].
No other [tex]\(x\)[/tex] satisfies the equation other than [tex]\(x = 4\)[/tex]. As [tex]\(4\)[/tex] is the only root, its sum is simply [tex]\(4\)[/tex].
Thus, the sum of the real roots of the equation is:
[tex]\[ \boxed{0} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.